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CHAPTER

Dynamic Similarity and
Dimensional Analysis

6.1 Definition of Physical Similarity.

Two systems described by the same physics operating under different set
of conditions are said to be physically similar in respect of certain specified
physical quantities, when the ratio of corresponding magnitudes of these
quantities between the two systems is the same everywhere.

There are three types of similarities as in following chart which

constitute the complete similarity between problems of same kind.

Geometric Similarity

\ 4

Complete similarity Dynamic Similarity

A 4
\4

Kinematic Similarity

\ 4

6.2 Geometric Similarity (G.S).

Geometric similarity implies the similarity of shape such that, the ratio
of any length in one system to the corresponding length in other system is the
same everywhere.

e Prototype:- is the full size or actual scale systems.

e Models:- is the laboratory scale systems.

e The model and prototype may be of identical size, although the two
may then differ in regard to other factors such as velocity and
properties of the fluid.
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length of model

length ratio =
length of prototype
L
Oor L.=—4
Ly
, model area L2,
area ratio = =

prototypearea L%
=12
L, Known as the model ratio or is the scale factor
6.3 Kinematic Similarity (K.S).
Kinematic similarity refers to similarity of motion
> Distance ™ Similarity of length (i.e., G.S.)
Motion —»

L, Time —4 Similarity of time intervals.

Lm
Vi _ Ty _ Lm . Tm _ Ly

= i
Vp P /T Lp Tp Ty
P

Lm/
. . Tyn? L T2 L
accelartionratio = —2- ="+ 2 ==
p/ Ly T3 T
T 2
P

velocity ratio =

Lm3/
. Q T, L3 . T L3
flow rateratio ="+ =—"2="2+"2==2L
Qp Lp/ L3 1 T

Tp

Therefore, geometric similarity is a necessary condition for the kinematic
similarity to be achieved, but not the sufficient one.

6.4 Dynamic Similarity (D.S).

Dynamic similarity is the similarity of forces, in dynamically similar
system, the magnitudes of forces at correspondingly similar point in each
system are in a fixed ratio. In a system involving flow of fluid, different
forces due to different causes may act on a fluid element. These forces are as
follows;

e Viscous force (due to viscosity) E,
e Pressure force (due to different in pressure) ﬁp
e Gravity force (due to gravitational attraction) Fjg

e Capillary force (due to surface tension ) ﬁc
e Compressibility force (due to elasticity) ﬁ;
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According to Newton's law, the resultant F; of all these forces, will
cause the accelartion of a fluid element, hence

- -

Fr=FE +FE+FE+F+F (6.1)
The inertia force F; is defined as equal and opposite to the resultant

accelerating force Fp

F, = —Fg

~ Eq.(6.1) can be expresed as

E,+E+E+E+F+F=0

For dynamic similarity, the magnitude ratios of these forces have to be same

for both prototype and the model. The inertia force F; is usually taken as the
common one to describe the ratio

a- Inertia Force.

The inertia force is the force acting on a fluid element is equal in
magnitude to the mass of the element multiplied by its acceleration.
Mass of element « pL3 p is the density, L is the characteristic length,
acceleration of a fluid element is the rate change of velocity in that direction

change with time

14 L
a X—,; tX=
t %4
V2
Soa C—
L

2
The magnitude of inertia force is thus proportional to p L3 VT = p L?V?
This can be written as |F;| o« pL?V? (6.2)
b- Viscous Force.
The viscous force arises from shear stress in a flow of fluid, therefor,

we can write magnitude of viscous force E,= shear stress * surface area.
Shear stress = p(viscosity) * rate of shear strain

Where rate of shear strain « velocity gradient o %

Surface area o L?

|F,| o H%LZ o« uVL (6.3)
c- Pressure Force.

The pressure force arises due to the difference of pressure in a flow field.
Hence it can be written as
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|Fp| oc APL? (6.4)
Where Ap is some characteristic pressure in the flow.

d-_ Gravity Force.
The gravity force on a fluid element is its weight, hence,

|Fg| o pl?g (6.5)

Where g is the acceleration due to gravity (or weight per unit mass)

e- Capillary or Surface Tension Force.

The capillary force arises due to the existence of an interface between
two fluids. It is equal to the coefficient of surface tension ¢ multiplied by the
length of a linear element on the surface perpendicular to which the force
acts, therefore,

17| o ol (6.6)

f- Compressibility or Elastic Force.

For a given compression (a decrease in volume), the increase in
pressure is proportional to the bulk modulus of elasticity E (Ap o« E), this
gives rise to a force known as the elastic force .

|F.| « EL? (6.7)

Note, the flow of fluid in practice does not involve all the forces
simultaneously.

6.4.1 D. S. of Flow Governed by Viscous, Pressure and Inertia Forces.
The ratios of the representative magnitudes of these forces with the help
of Eq's (4.2) to (4.5) as follows:

Viscmitsforce _ |va| o uvL _ N (6.8)
Inertiaforce |Fy| pv2L2  pVL
pressu.reforce _ |Iip| o ApL? _ A_p (6.9)
Inertiaforce |7y pv2L2  py?2

The term pLV/u is known as Reynolds number, Re.

Inertla JOT<E s thus proportion to the magnitude ratio.

Viscous force
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The term pA% is known as Euler number, Eu.
~ Re & Eu Represent the criteria of D.S. for the flows which are affected
only by viscous, pressure and iertia forces. For example are

1- The full flow of fluid in a completely closed conduit

2- Flow of air past a low — speed aircraft

3- The flow of water past a submarine deeply submerged to produce no
waves on the surface.

Hence, Re & Eu for a complete dynamic similarity between prototype and
model must be the same for two. Thus

Pp Lpr — Pm LmVm (6 10)
Up Hm '
P _ APm (6.12)

ppVE  pm Vi

6.4.2 D.S. of Flow Governed by Gravity and Inertia Forces.

A flow of the type in which significant force are gravity and inertia
forces, is found when a free surface is present. For example are

1- The flow of a liquid in an open channel.

2- The wave motion caused by the passage of a ship through water.

3- The flow over weirs and spillways.
The condition for D.S. of such flows requires

e The equality of Eu.

e The equality of the magnitude ratio of gravity to inertia force at

corresponding points in the system.

Gravityforce |I:")_g| pL3g Lg (6 12)
Inertiaforce  |Fy| pV2[2 ~ y2 '
1
. Lg)2 .
The reciprocal the term (%) is known as Froude number, Fr
%4

~ Fr = T

(Lg)2

. Dynamic similarity between prototype & model is the equality of Froude
number

VIip 9p _ JLm gm (613)

Vp Vi
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6.4.3 D.S. of Flows with Surface Tension as the Dominant Force.
Surface tension forces are important in certain classes of practical
problems such as:
1- Flows in which capillary waves appear.
2- Flows of small jets and thin sheets of liquid injected by nozzle in air.
3- Flow of a thin sheet of liquid over a solid surface.
Dynamic similarity is the magnitude ratio
|ﬁc| oL o

W X szLZ = szL (614)

The term plsz is usually knows as Weber number, Wb .

For dynamic similarity (Wb )., = (Wb ),

. Om _ O-p

i. e.,pmV%Lm = ooviL, (6.15)

6.4.4 D.S. of Flows with Elastic Force.

The magnitude ratio of inertia to elastic force becomes

Inertia force @ pviLz _ pv?

Elastic force | Fy| EL2 = E (6.16)
2

The parameter % is known as Cauchy number.

For dynamic similarity flow (Cauchy)m = (Cauchy)p

. vargl _ pPVg

i.e (6.17)

" (EDM T (Es)p
If the flow is isentropic E = Ej is isentropic bulk modulus of elasticity.

i = sound wave propagates through a fluid medium :\/%

= the term pV? /E can be written as V2 /i?
The ratio (?) = Ma is known as Mach number, in the flow of air past

high-speed aircraft, missiles, propellers and rotary compressors. In these
cases equality of Mach number is a condition of dynamic similarity.
Therefore

(Ma )p = (Ma )y

ie (f—;’) = (&) (6.18)
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Dimensionless Representation Name Recommended
terms magnitude ratio symbol

of the force
pLV/p Inertiaforce Reynolds Re
viscous force number

Ap/pV? pressureforce Euler number Eu
Inertiaforce

V/(Lg)/? Inertia force Froud number Fr
Gravity force

o surface tension Weber number Wb
pV2L Inertia force

v/JEs/p Inertiaforce Mach number Ma
Elastic force

Ex.1

When tested in water at 20C° flowing at 2 m/s, an 8-cm diameter sphere
has a measured drag of 5 N. What will be the velocity and drag force on a
1.5m diameter weather balloon moored in sea-level standard air under
dynamically similar condition?

Sol.

For water at 20C° p ~ 998~% & u = 0.001~Z
m m.s

For air at sea level p ~ 1.2255% =178 1075

kg

The balloon velocity follows from dynamic similarity, which requires
identical (Reynolds number).

Re,, = Re, =

Re
m 0.001

1.6 x 105 = 1_2255‘%110—71(1_-?_ L
1.78%10

__ pVD

_998%(2.0)(0.08)

~ 1.6 * 10° = Re,

- Vballon ~ 1-55%

Then the two spheres will be identical drag coefficients:
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Dm = pyz © md?\| T md?\| T pv2d?
p pVZ( 2 ) . pV2( . ) » p

— 5 — — _ Fpalon
Com = 998(2)2(0.08)>7 0.4986 = Cpp = 1.2255(1.55)2(1.5)2m /4
Solve for fpaion = 1.296 N
Ex.2 A model of a reservoir having a free water surface within it is drained
in 3 minutes by opening a sluice gate. The geometrical scale of the model is
(1/100). How long would it take to empty the prototype?

Sol.
L
Qn _ Tm _ Lr T =Im
=Ip = =
p L Tp
Tp

The forces control the flow is

(Fg),, _ (P9l?),,  wpid,
(Fg), — (pgr®), — Wpl}
Fdm _ (m_a)m _ p_m@(L_r) o, Bl
(Fdp (m a)p  pp Ly \T? L
By equating the two ratio

=W, L3

1- Gravity force =

2- Inertia force =

3 _ 3 Lr
VVTLT' pT‘LTF
r
3 _ 3 Lr
prgrLr_prLrﬁ
"2
1
2 _ Lr T4 _ Too. : — — :
T —g——————>T—2—T, sinceg, =1 T, =3 min
r p

Tp = +1v/900 = 30 min

6.5 The Application of D.S and the Dimensional Analysis.
6.5.1 The concept.

A physical problem may be characterized by a group of dimensionless
similarity parameters or variables rather than by the original dimensional
variables. This gives a clue to reduction in the number of parameters
requiring separate consideration in an experimental investigation.

pVDy

Ex:-Re = . Re 2000 ~ 4000 by varying V without change in any

other independent dimensional variable .
In fact, the variation in the Re physically implies the variation in any of the
dimensional parameters defining it.
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6.5.2 Dimensional Analysis.

The dimensional analysis is a mathematical technique by which can be
determining many dimensionless parameters and solving several engineering
problems.

There are two existing approaches:-

1- Indicial method.

2- Buckingham's pi theorem.

The dimensional analysis can be explain by the following,

e The Various physical qumtities used in fluid phenomenon can be
expressed in terms of fundamental quantities or primary quantities.

e Fundamental quantities are Mass (M), Length (L), Time (T),
Temperature (0) is used for compressible flow.

e The quantities which are expressed in terms of the fundamental or
primary quantities are called derived or secondary quantities as
(velocity, area, acceleration)

e The expression for a derived quantities in terms of the primary
quantities is called the dimension of the physically quantities.

e A quantity may either be expressed dimensionally in M-L-T or F-L-T
system.

Ex.3

Determine the dimensions of the following quantities.
(1) Discharge.
(i)  Kinematic viscosity.

(i)  Force.
(iv) Specific weight.
Sol.
(i) Discharge = area * velocity
:L2*£:£:L3T_1
T T

(if) Kinematic Viscosity(v)=u/p
Where (n) given by (t) = yZ—;

force
= T __ shearstress _ zrea
— du - L 1 -1
/ay L T
. L
massxacceleration __ MX7 _ MxL

1 - 1 — 1
- 22 272y
AreaxT L><T LTXT
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_M _ —1p—1
,LL—LT—ML T

mass M —
and p = =—= ML3
volume L3
ML™iT71 _
so=E= = [2T1
p ML™3

(ili)  Force = mass * acceleration

=M 22 =2 = MLT 2
Time?2 T2
. . . . MLT™2
(iv)  Specific weight=Weight/volume= force/volume= =
ML™2T2

6.5.3 Dimensions of Physical Quantities.

All physical quantities are expressed by magnitude and units as an
example;
Velocity = 8 m/s; Acceleration = 10 m/s?
(8 & 10 are the magnitudes but m/s & m/s? are the dimensions)
Sl(system international ) units, in fluid mechanics the primary physical
quantities or (base dimensions) are the [ Mass, Length, Time,
Temperature] are symbolized as [ M, L, T, 8]. Any physical quantity can be
expressed in terms of these primary quantities by using the basic
mathematical definition of the quantity, resulting is known as the dimension
of the quantity, by substitute the mass by force (F)
F=MLT?2—————— - M =FT?L?!
Let us take some examples.

1- Dimension of stress.

forc

e .
shear stress T = e force = mass * accelarion

Dimension of acceleration = dimension of velocity/ dimension of time

. . . . L
= Dim. of distance/(Dim.of time)? = =
Dim.of area (length)? = L?

ML

r=12 = MLTIT2

2- Dimension of viscosity.
du
T ==ﬁla;
or, p=4

ay
The dimension of velocity gradient du/dy can be written as
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=~ NI

du/dy = dimension of u/ dimension of y=L = T1

Dimension of p

. Dimoft _ MLlT?
“ M= Dimofduay 71
H.W. Drive the dimensions of the following physical Quantities in [M,L,T],
momentum, work , weight, flow rate , Power.

=ML IT1

6.6 Rayleigh's Indicial Method (Method-1).
Based on the fundamental principle of dimensional homogeneity of
physical variables.
Procedure.
1- The dependent variable is identified and expressed as a product of all
the independent variables raised to an unknown integer exponent.
2- Equating the indices of (n) fundamental dimensions of the variables
involved, (n) independent equations are obtained.
3- These (n) equations are solved to obtain the dimensionless groups.
Ex.4
Let us illustrate this method by solving the pipe flow problem with
Ap/1 along the pipe.
Step_1. Here, the dependent variable Ap/l can be written as
ATp = K(V2DP pud) Where, K is constant.
Step_2. Inserting the dimension of each variable in the above equation, we
obtain.
ML™2T~2 = K(LT " H)2(L)°(ML3)¢(ML T 1)
Equating the indices of M,L and T on both sides , we get
Ml c+d=1
Ll a+b—-3c—d=-2
T] —a—d=-2
Step-3-:- there are three equations and four unknowns. Solving these
equations in terms of the unknown d, we have

a=2-d
b=—-d-1
c=1-d

Hence, we can be written
Ap - —d- —
— =KD, pt )
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B e (L )“
l Dh Vth

ApDyp _ p \¢
Ipv2 K (Vth)
Ex.5
Write the equation of displacement for a free fouling body in time T.

Assuming that the displacement dependent on weight, acceleration gravity
and time.

Sol.
S=FW,g,T) displacment
S =KW?aegPT®

The equation must be homogenate in dimension
MPLIT® = K((MLT~2)3(LT~2)"(T)°)
Equating the indices of same dimension of quantities

a=0
a+b=1 b=1
—2a—2b+c=0 LCc=
~S=KW°%T?*)or s =KgT?
Ex.6
Find the relation of Reynolds number by dimensional Analysis if
Re=F(p,u,V,L)
Sol.

Re =F(p,1,V,L)
R, = K p*1bveld
MOLOT® = K (ML™3)® (ML TP (LT~1)¢(L)4

a+b=0 a=-b
—-3a—b+c+d=0 d=-2b—c=-2b+b=-b
—b—c=0 b=—-c
c=-b
#“ R,=Kpbubyv-bypb

b
RezK(ﬁ) K=1b=-1
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Ex.7
Find the dynamic pressure over a submerged body due to the flow of
uncompressible fluid. Assuming the pressure is function of density and
velocity.
Sol.
p=F(V)
p= K pa Vb
F11-2T0 — (Fa T?2a L—4a)(Lb T—b)
From above
1=a , -2=-4a+b, 0=2a-b
~ca=1,b=2
p=KpV?

Ex.8
Find the expression for the input power to a fan. By dimension

analysis, assuming the input power depends on the air density, velocity,

viscosity, fan diameter, rotation speed and sound velocity.

Sol.

power = K(pa‘deC w9 e if)

By using (mass, length, time) as fundamental units.

MI2T -3 = (ML—3)a(L)b(L T—l)c (T—l)d (ML—lT—l)e(L T—l)f

1=a+e a=1-e

2= —-3a+b+c—e+f then b = 5-2e-c-f

—3=—c—d—e—f d= 3-c-e-f

Subsititute in power Eqgn.

1-e d5—2e—c—f Ve w3—c—e—f

power = Kp pe if

2,\ € —-c f
power = K |(“52) ()" (%) |w'a%s
The terms between brackets dimension less
15¢ term = R,
V=Rw
2™ term = fan ratio.

3" term = Mach number.
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6.7 Buckingham's Pi Theorem. (Method-2)

Assume, a physical phenomenon is described by
n = number of independent variables like X1, X2, X3....Xn the phenomenon may
be expressed as
F(xq, %5, X3, cun o Xm) =0 (6.19)
m = number of fundamental dimensions like mass, time, length and
temperature or force, length, time and temperature.
Buckingham's theorem defining as the phenomenon can be described in terms
of (n-m) independent dimensionless group like my, o, ... ... ... Tm—n Where
terms, represent the dimensionless parameters and consist of different
combinations of a number of dimensional variables out of the n independent
variables.
Therefore Eq.(6.19) can be reduced to
F(my, Ty, e vy ) = 0 (6.20)

6.7.1_Mathematical Description of (7 ) Pi Theorem.

A physical problem described by n number of variable involving m
number of fundamental dimensions (m < n) leads to a system of m linear
algebraic equations with n variables of the from
a11X1 +a;X; + - apXy = by
ap1X1 + AzXy + - AxnXp = by (6.21)
am1Xy + amzXy + - AmnXy = by
Therefore all feasible phenomena are define with n > m
No physical phenomena is represent
n< m no solution
m=n one solution
All the parameter have fixed value.

In a matrix from
AX=b (6.22)

Where A=
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6.7.2 Procedure for Determination i Terms.
m = Number of fundamental dimensions like mass, (M), time (T), Length
(L), temperature(8)
n = number of independent variables or quantities included in physical
problem such as ( A1,A2,Asz-----An) where A1,A2Az-----An as pressure ,
viscosity and velocity, can also be expressed as
F1(4,, 45, 43, ————A4,) =0 (6.23)
(n-m) = number of dimensionless parameter (i ) like 7y, 5, 3, ... Tp_m

m , IS represent the dimensionless parameters and consist of different
combinitions of a number of dimensional variable. Mathematically, if any
variable A1, depends on independent variable Az.As...An the function A; =
F(A4,,4;, ... 4,)
According to m-theorem, Eq. (6.23) can be written in terms of n- terms
(dimensionless groups). Therefore the above equation can reduced to
Fi(my, Ty, . Tpy_yy) = 0 (6.24)
The method of determining r parameters is

- Select (m) of the (A) quantities with different dimensions

- The above selection which contains among them (m) dimensions

- Using the (m) selection as repeating variables together with one of the

other A quantities for each (). Each m-term contains (m+1) variables.

Note-1, It is essential that no one of the m selected quantities used as
repeating variable be derived from the other repeating variables.
Note-2, Let A1,A2,As contain M,L and T, not necessarily in each one , but
collectively.
Then the first 7 parameter is made up as
m = A5 AV AT A,
The second m, = A2AY? A2 As (6.25)
And so on until m,_,, = A,""™ Az37m A AL
In a bove eqgn's the exponents are to be determined

- The dimensions of (A) quantities are substituted

- The exponents of M,L and T are set equal to zero in 7 parameters
There produce three equations in three unknowns for each m parameter, so
that the x,y,z exponents can be determined , and Hence the r parameter.
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6.7.

3 Selection of Repeating Variables (R.V).

1- (m) repeating variable must contain jointly all the fundamental
dimension

2- The repeating variable must not form the non-dimensional parameter
among them.

3- As far as possible, the dependent variable should not be selected as
repeating variable

4- No two repeating variables should have the same dimensions

5- The repeating variables should be chosen in such a way that one
variable contains geometric property ( e.g , length , L, diameter, d,
height, h) , other variable contains flow property (e.g velocity V,
acceleration a ) and the third variable contains fluid property ( e.g
mass density p, weight density W , dynamic viscosity p)

Q) L,V,p

(i) d,V.,p

@) Lv,m

(iv) dV,u

Ex.9

PV d*e (

Show that the lift force F; on airfoil can be express as F, =
ova

u %)

Where p=mass density , V = velocity of flow
u= dynamic viscosity  «= Angle of incidence

d = A characteristic depth
Sol.
Left force F, is function of;p, V, d, m, « mathematically, F, =
fCuV,d,po)————()
OrF(F,pV,dux<x)=0——————— (ii)

=~ Total number of variable, we have n=6

Writing dimensions of each variable
F,=MLT%p=ML3V=LT d=Lu=ML'T™', = MLOT®
Thus, number of fundamental dimensions, m=3

s~ Numberof m—terms=n-m=6—-3=3

Eq.

(ii) can be written as : F, (mq, M5, m3) =0 — — — — — (iii)
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Each m-term contains (m+1) variables, where m=3 and also equal to
repeating variables (R.V). Choosing (d, V, p) as R.V

m, = d®. Vbl pt F,

T, = daz.VbZ.pCZ.u

T3 = d®. Vb3, p3

T — term:

m, = d Vbl pl F,

MOLOTO — Lal(L T—1)b1(ML—3)c1(MLT—2)

Equating the exponents of M,L, T respectively, we get

forM:0=c;+1———— ¢, =-1
fOTL:0= a1+b1_3C1+1
forT:0=—-b; —2———> by =-2

. a1=—b1+3C1—1=2—3—1=—2
Substituting the values of a,, b; and c,in m;, we get

-2 -2 -1 FL
m=d Ve F=—
1 p L pv2dz2

Ty — term:

T, = d%. VP2, pc gy

MOLOTO = L% (LT~Y)P2 (ML=3)%.(ML™T™1)
Equating the exponents of M,L and T respectively , we get

forM:0=c, +1———> ¢, =-1
FORL:0:a2+b2_3C2_1
ForT:0= —b, —1———> b, =—1

oo a2=_b2+3C2+1=1—3+1=—1
Substituting the values of a,, by, and c, in m,, we get

— g-1y-1 -1, _ _HK_
m,=d .V " .p H=

vd
orm, ==

T3 — term

T3 = da3. Vb3.pc3. e ¢

MOLOTO = L% (LT~1)bs, (ML™3)%.(MOLOT?)

Equating the exponents of M, L and T respectively , we get

forM:0=c3+0———> ¢c3=0
forL:0= a3+ bz —3c3+0
forT:0= —b3+0———>b3=0

' a3:0
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vy =d% v x=x
Substituting the values of ©y, T, and m5 in Eq. (iii), we get

Fy, pvd _
h (szdZ’ ,oc)—O

7
prZLdZ - Q)(puLd’oc)

or F,=pV3d?¢ (puLd,oc)
Ex.10

The discharge through a horizontal capillary tube is thought to depend
upon the pressure drop per unit length, the diameter and the viscosity. Find
the form of the discharge equation.

Sol.
Quantity Dimensions
Discharge Q 3T 1!
Pressure drop/length M L2T~2
Apll
Diameter D L
Viscosity p M LT

Then F(Q,AL—p,D ,u) =0

Three dimension are used, and with four quantities these will be one &
parameter

n=4 m=3—-—————on=n—-m=4-3=1

= Q%(B)"D%u

Substituting in the dimension gives

m= (LT~ (ML2T~%)" (L2)(M L7*T~*) = MOL°T®

The exponents of each dimension must be the same on both sides of the
equation.

WithL; 3X; -2V, +Z,—-1=0—————— )
T, _X1_2Y1—1=0 —————— _)X1=1

From Eq. (i) Z; = —4
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_ 128
i core

After solving for Q
0=Cc2 p*

L u

Ex.11

Consider pressure drop in a tube of length I, hydraulic diameter d,
surface roughness €, with fluid of density p and viscosity p moving with
average velocity U. Using Buckingham's & - theorem obtain an expression
for Ap .
Sol.
This can be expressed as
f(Ap, U,d,lE, p, ﬂ) =0
Now n=7 since the phenomenon involves 7 independent parameters.
We select p,U,d as repeating variables (so that all 3 dimensions are
represented)
Now, 4 i ----—>(7-3) parameters are determined as
m, = p* UPrdciAp
m, = p%2UPz d%
w3 = p® UPs d |
T, = p% UPr d% €
Now basic units

p————>ML3

U———>LT™?

d———1L

Ap — ——— ML™1T 2
p————>MLIT?
€eE———1

l———5.L

All 7T parameters — — ——— M°L°T?°

a,=-1,b,=-2;C,=0
a,=-1;,b,=-1;c,=-1

a;=0; b3=0; cg=-1

a,=0; b,=0;c, =-1

Thus writing m; = f(m,, 73, T4)

=~ The mr group can be written as follows,
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T, =d°V2ptAp = pA% Eu .No.
7))
T2 = s T Re .N,.

— l

Ty =d W0 = -

7T4_ = E

. The new relation can be writing
Ap dvp 1 €

h (G e =0
When conclude Ap

l €

_pvz_fZ( T
w
P=y

Ap  V? ( l €
=" f(Re ,2.5)
w29 f2 "d’d

The pressure drop is function of (L/d) exponent to(1) in darcy equation

Ap  V? L €
w=35fs(Re .3)
Therefore

— = (Factor f)< ( g))
Ex.12

Assume the input power to a pump is depend on the fluid weight per
unit volume, flow rate and head produced by the pump. Create a relation by
dimensional analysis between the power and other variables by two methods.
Sol.

Method-1
P=f(W,Q H)
P =K weQbH*

In Dimension analysis

FlirT-1 = (FL—3)a(L3T—1)b(L)c
Hence

a=1,1=-3a+3b+c
~a=1b=1c=1

P =KWQH
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Method-2
F(P,W,Q,H) =0
The variables in dimensions are

P————>FLT!
Q - L3T—1
W ——-FL3
H———L

The four variables in 3 fundamental dimensional ~ © group is(4—3) =1
Choice Q, W, H as variable with unknown exponent

w oy = (Q)M (W)Pr (H) P

or my = (L3% T~%)(FP1 [73P1) (L) (F L T™1) = FOLOTO

Exponent equality foe F,L,T producing

a, =-1,b;=-1,¢; = -1

wm=Q 'WlHlp= P

QWH
P

m = F (Qm)
P =K(QWH)
Ex.13

Assume the input power to a pump is depend on the fluid weight
(W), flow rate (Q) and head produced by pump (H), create a relation by
dimension analysis between the power input and other variables by using

FLT system.

Sol.

Step-1

Quantities Dimensions

Power (P) FLT!
Flow rate (Q) 371
Weight(W) per unit volume FL3
Head (H) L

Step-2:- there are four variables & (3) fundamental dimensions
~ mgroupis(4—-3)=1
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Step-3:

Choice Q, W, H as variable with unknown exponent.
F,(P,W,Q,H) =0—> F;(my) =0

oy = (Q)% (W)Pr(H) P

or my = (L3T"YH)% (F L3)P1 (L)% (FLT™Y)! = FOLOT®
Flby+1=0—— b; =—-1

L] 3a; —=3b;+c;+1=0 -3a,+c¢c, =—-4

T -a,-1=0——> aq; =-1

" C1:_1
— _ _ P
. 7T1:Q 1W 1H 1P:m
P
™ =1 (Grm)
P =K(Q,W,H)
Ex.14

Assuming the resistant force for a body submerged in a fluid is function
of (density p , velocity V, viscosity u and characteristic length L). Conclude
a general equation of resistant force by using FLT system.

Sol.

Step.1
Quantities Dimension
Force(F) F
Density(p) F L™4T?
Velocity(V) LT
Viscosity(u) F L2T
Length(L) L

F,(F,p,V,L,uy) =0 n=5,m=3
Step-2
We have 5 variables with 3 fundamental dimensions
~mgroups =5—-3=2
We choice 3 repeated variables of unknown exponents
my = (L) (V)P (p)r F = (L) (LT~ (F T2L™*) (F) = F°LOT®
F] Ci+1=0—— C; =-1
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L] a+by—4c;,=0—— a; +b; =—4

T -b;+2C;,=0—> b;=-2; a; =-2

~ my = L2 V~2p~1F = F/12V?p

M = (L) (NP (p)2 p = (L) (LT~ )2 (FLT*TH% (F L7?T) =
FOLoTO

F] C,+1=0—— C,=-1

L] a,+b,—4C,—2=0

az+b2+2:___) az+b2:_2
' 32:_1
ST, = L_1V_1p_1‘u = %— —_ 7'[2_1 = Re
~ f(my,my) =0

-1 F
Fi(my,m3Y) = 0= == Fi (75 Re) = 0

#F = 12V?p F(R,)
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Problems.

P6.1 A stationary sphere in water moving at velocity of 1.6 m/s experiences a
drag of 4 N. Another sphere of twice the diameter is placed in a wind
tunnel. Find the velocity of the air and the drag which will give
dynamically similar conditions. The ratio of kinematic viscosities of air
and water is 13, and the density of air is 1.28kg/m3. [Vair=10.4m/s,
F4=0.865 N]

P6.2 A 1:80 scale model of an aircraft was tested in air at 20C ° moves with
speed 40m/s

a- What is the speed model if its submerged in water at 26C°,

2 2
Vair = 14.86 10-6mT ; Viater = 0.864 * 10—6mT [V=2.325 m/s]

b- Determine the air resistance to the prototype if model water resistance
is 7.43N. [Fp=2.643 N]

P6.3 Predicting the general form of input power to a fan , which is depends
on the density, velocity, viscosity of air, diameter, angular velocity of

fan and speed of sound i. [P =k (("’Td) (Re) (Ma)) pV3d2]

P6.4 Write the equation of displacement (S) for a free failing body with time
(T). Assuming that the displacement depends on weight (W), gravity
(9) and time(T). [S=kgT?]

P6.5 A model spillway has a flow of 100 I/s per meter of width. What is the
actual flow for the prototype spillway if the model scale is 1:20
[0p=8.94 m3/s per m]
P6.6 Researchers plan to test a 1:13 model of a ballistic missile in a high —
speed wind tunnel. The prototype missile will travel at 380m/s through
air at 23C °and 95.0 kPa absolute
() If the air in the tunnel test section has a temperature -20C° at a

pressure of 89 kPa absolute, what its velocity? [Vm=351 m/s]
b) Estimate the drag force on the prototype if the drag force on the
model is 400N. [Fp=72310 N]

P6.7 Derive an expression for the shear stress at the pipe wall when an
incompressible fluid flows through a pipe under pressure. Use diameter
D, flow velocity V, viscosity g and density p of the fluid by using
theorem. [t = pV?@(Re)]

P6.8 Derive an expression for the drag on aircraft flying at supersonic speed,
in the form of a function including dimensionless quantities by using
Buckingham's (i) theorem. [Fy = pL?>V?*f,(Re,Ma)]
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P6.9 Derive an expression for small flow rates over a spillway in the form of
a function including dimensionless quantities. Use dimensional
Analysis with the following parameters height of spillway y, head on
the spillway H, viscosity of liquid g, density of liquid p, surface tension

oand acceleration due to gravity g. [q = g'/?H3/%f, (S Re, We)]

P6.10 The resisting force F at a plane during flight can be considered as
dependent up on the length of aircraft L velocity V air viscosity, air
density p and black modules of air k. express the functional
relationship between these variables and resisting force using

. . : _ 122 Kk
dimensional analysis. F=L“Vp ¢ (LVp'VZp)

P6.11 The pressure difference 4p in a pipe of diameter D and length L due to
turbulent flow depends on the velocity V, viscosity 4, density o and
roughness ¢ using Buckingham's m theorem to obtain an expression

V L VD

P6.12 Prove that the shear stress zin a fluid flowing through a pipe can be

expressed by the equation T = pVZ(z)(p%V)

Where; D = diameter, p = mass density, V= velocity u = viscosity.

P6.13 A model of a submarine of scale 1/40 is tested in wind tunnel. Find the
speed of air in wind tunnel if the speed of submarine in sea water is
15m/s. Also find the ratio of the resistance between the model and its
prototype. Take the value of kinematic viscosities for sea water and
air as 0.012 stokes and 0.016 stokes respectively. The weight density

of sea water and air are given as 10.1kN/m® and 0.0122 kN/m3
m R,

respectively. Vi = 800?, - = 0.00214

14

P6.14 A spillway model is to be built to a geometrically similar scale of 1/50
across a flow of 600m width. The prototype is 15m high and
maximum head on it is expected to be 1.5m.

i)  What height of model and what head on model should be used.
[Hm=0.3 m]
i) If flow over the model for a particular head is 12 L/s what flow per

meter length at prototype is expected. % =7071 m]
1

N
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P6.15 In an airplane model of size 1/50 of its prototype the pressure drop is
4 bar. The model is tested in water. Find the corresponding pressure
drop in the prototype. Take specific weight of air = 0.00124kN/m?3. The
viscosity of water as 0.01 poise while the viscosity of air is 0.00018
poise. [4p=0.0004114 bar]

P6.16 An oil of S.G. 0.9 and viscosity 0.003 N.s/m? is to be transported at the
rate of 3000 L/s through a 1.5m diameter pipe. Test was conducted on a
15cm diameter pipe. Using water at 20C" if the viscosity at 20C" is
0.001 N.s/m? fined.

1) Velocity of flow in the model. [Vm=5.1 m/s]
ii) Rate at flow in the model. [Q=80.9 lit/s]

P6.17 A geometrically similar model of an air duct is built to 1/25 scale and
tested with water which is 50 times more viscous and 800 times than
air. When tested under dynamically similarity conditions the pressure
drop is 2 bar in the model. Find the corresponding pressure drop in
full scale prototype. [1.024*103bar]

P6.18 In a geometrically similar model of spillway the discharge per length is
0.2md/s. If the scale of the model is 1/36, find the discharge per meter
run of the prototype. [0p=43 m3/s]

P6.19 The force required to tow a 1:30 scale model of a modern boat in a
lake at a speed of 2m/s is 0.5N. Assuming that the viscous resistance
due to water and air is negligible in comparison with the wave
resistance calculate the corresponding speed of the prototype for
dynamically similar conditions. What would be the force required to
propel the prototype at that velocity in the same lack? [Fp=13500 N]

P6.20 In an airplane model at size 1/40 of its prototype the pressure drop is
7.5 kN/m? the model is tested in water. Find the corresponding
pressure drop in the prototype. Take density of air = 1.24 kg/m?,
density of water = 100 kg/m?, Viscosity of air = 0.00018 poise,
Viscosity of water = 0.01 poise. [4pp=1.225 N/m?]
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CHAPTER 7

Viscous Incompressible Flows
in Pipes

Part-One
(Laminar Flow)

7.1 Introduction.

Real fluids possess viscosity, while ideal fluid is inviscid. The viscosity
of fluid introduce resistance to motion by developing shear or frictional stress
between the fluid layers and between fluid layers and the boundary, which
causes the real fluid to a adhere to the solid boundary and hence no relative
motion between fluid layer and solid boundary.

Viscosity causes the flow to occur in two modes laminar and turbulent flow.
Reynolds number < 2000, the flow is always laminar through a pipe which is
critical value of Re for circular pipe. Flow between parallel plates based on

mean velocity and distance between the plates.
__ Inertiaforce

Re = viscousforce

The flow is laminar when one of the conditions occurs
) Viscosity is very high.
i) Velocity is very low.
iii) The passage is very narrow.

7.2 Relationship between Shear Stress and Pressure Gradient.

The shear stress is maximum at the boundary and gradually decreases
with increase in distance from the solid boundary where the velocity is zero
at the boundary. A pressure gradient exists which overcome the shear
resistance and causes the fluid to flow. Due to non uniform distribution of
velocity, the fluid at any layer moves at a higher velocity than the layer
below.

The motion of the fluid element will be resisted by shearing or frictional
force which must be overcome by maintaining a pressure gradient in the
direction of flow, from fig 7.1,
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Let t = shear stress on the lower face ABCD of the element
T+ Z—; 8y = Shear stress on the upper face ABCD of the element.

For 2-dimensional steady flow there will be no shear stress on the
vertical faces ABB'A' & CDD'C' as in Fig. 7.1. Thus the only forces acting
on the element in the direction of flow (x-axis) will be the pressure and shear
forces. Let 8x, 8y and 8z are element thickness in X, y and z directions.

Net shearing force on the element in y-direction is equal to

=(r+ j—; 8y) 6x.6z — 1.5x8z = Z—;Sx. 8y.82 (7.1)
Net pressure force on the element in x-direction is equal to
= p.8y.62 — (p + 52 6x) 8y. 6z = — 2 6x. 8y. 62 (7.2)

For the flow to be steady and uniform these begin no acceleration, the sum of
the forces must be zero, from (7.1 & 7.2)

g—;.5x.5y. 52— L. 6x.6y.62=0
The relationship between shear stress and pressure gradient is

dp _ 0t
3 3y (7.3)

Eq. (7.3) indicates that the pressure gradient in the direction of flow is equal
to the shear gradient in the direction normal to the direction of flow. This is
applicable for laminar and turbulent flow.

+ 25
T 3y y
DD ————*» C
y A , 9
A B P+ o0 5x
p : P 0x
D| ./~~~ C
/14- ————— T
A B

Figure 7.1: Pressure and Shear stress Forces on a Fluid Element.

7.3 Laminar Flow between Parallel Plates.

Consider two parallel plates with (h) distance apart. For steady flow
between them a pressure gradient dp/dx exist which related shear stress in y-
direction.
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Since t = p &
_'udy
9%u 16_p

Then — 372 = PP

Integration gives

u=i(g—5)y2+61y+62 S DU N ) AN N N

u=0aty=0andy=nh

10 X
C;=0, Cy=-5-"h
And ) , Figure 7.2: Laminar flow between parallel plates.
1 (_9 — 2
u_Zu( ax)(hy y)

This equation is a parabola shape with vertex at center line (y=h/2) when
the maximum velocity occurs

_ 1 (_op\(n_n

Umax_ZM( ax)(z 4)
F]

Oftty gy = i (—2E)n? (7.4)
The (-ve) of pressure gradient is the pressure drop in the direction of flow.
The discharge dq through a small area of depth dy per unit width is
dg = udy

1

dq = o (— 22) (hy — y?)dy

fo 2u (_ Z_Z) (hy —y?)dy
h
o—(— ()

0

—_1 (_0p\;3
Q - 12u( ax)h (7-5)
Mean velocity of flow @ Qo _ 9

flow area hx1

1 P\, 3
__ maa _ 1 ( 3p\,2
u= h T 124 ( ax) h (7.6)
The above velocity () may be used to calculate the pressure drop

_ 12upu 6_p _ 12uu
—dp = 2 0x o nz (7.7)
From Eq's (7.4 & 7.6)
Unax =5 U

2
The pressure drop between two sections with distance x; and x, from origin

is
fpz( dp) — f;flz 12pu dx

12uu
P1=DP2= 73 (x2 — x1)
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If L is the length between the sections

12pul

b1 — P2 = :zu (7.8)
The variation of shear stress in the y-direction is

2 [L(_o» _ 2
T_”dy Zu( ax)(hy y)]

_1(_9% —

T2 (6 6xh) (h Zy)
= -5G-) (79)

Shearing stress varies linearly with y, it is maximum at the boundary, y=0
and y=h

aty =0 T0=% —Z—Z]a=§(1;—fﬁ)=% . (7.10)
Aty =h = —3(=50) =5 (Gru) = - (7.1

Shearing stress at the center y = h/2 is zero
r= (M) _g

dx \2 2
Ex.1

Incompressible fluid flows through a rectangular passage of width (b),
small depth (t) and length L, in the direction of flow. If the pressure drop
between the two ends is p calculate the shear stress at the wall of the passage
in terms of mean velocity and the coefficient of viscosity
Sol.

__12uul
==
t op tp
To=3 (_ 5)_ oL
Then TO = W?u

Ex.2
Water at 20C° flows between two large parallel plates separated by a
distance of 16mm. calculate
i) Max. velocity
i) Shear stress at the wall if the average velocity is (0.4 m/s) (take u
for water = 0.01 Poise)

i _t(_oy_3-_3 —o06 ™
i) Umax—gﬂ( ax)—zu—2*0.4—0.6
|

S
i) Shear stress at the wal

To= —-——= —015 n/m?

7.4 Couette Flow.

Couette flow is the flow between two parallel plates as in Fig. 7.3
one plate is at rest and the other is moving with a velocity U, assuming
infinitely large in z-direction
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The governing Equation is
ap _ | d*u
dx 1 dy?
Flow is independent of any variation in z-direction the boundary condition
are

i) Aty=0,u=0 y _

i) Aty=h,u=U Moving plate
After integration twice we get

=——= c c
pax ) t+cy+c;

Aty=0,u=0,thenc, =0

Fixed plate

U 1dp Figure 7.3: Couette flow between parallel plates

" h  2pdx
Then the expression for u becomes

=Y y—_L% (py_y2
u=yU-0 (hy —y?) (7.12)

Multiply and divided by(h?)

oru=2y-L &yy_2) (7.13)
h 2u dx h h

Eq. 7.13 can also be expressed in the form

v_y_ K z(l_z)

U h 2uU'dx 'h h

u_YJy Yy Yy
or §=F+Pi(1-3) (7.14)

Where P = —;;L—ZU (Z—Z)

P is known as the non- dimensional pressure gradient. When P=0, the
velocity distribution across the channel reduced to

u . .
— = % is known as simple couette flow .

U

e When P>0 , i.e for a negative pressure gradient (-dp/dx ) in the
direction of motion , the velocity is positive over the whole gap.

e When P < 0, these is positive or adverse pressure gradient in the
direction of motion and the velocity over a portion of channel width
can become negative and back flow may occur near the wall, which is
at rest

7.4.1 Maximum and Minimum Velocities.
The variation of maximum and minimum velocity in the channel is
found out by setting du/dy = 0 from Eq. 7.14, we can write
au _ U PU( oY
dy h T (1 2 h)
Setting du/dy = 0 gives
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S

= +— (7.15)

By studying Eq. 7.15 we conclude that

1-  The maximum velocity for P=1 occurs at y/h =1 and equal to U. For P>1
, the maximum velocity occurs at a location y/h <1.

2- i.e that with P>1, the fluid particles attain a velocity higher than that of
the moving plate.

3- for P=-1, the minimum velocity occurs at y/h =0 for P< -1, the minimum

velocity occurs at a location y/h>1

4- This means that these occurs a back flow near the fixed plate. The values

of maximum and minimum velocities can be determined by substituting

the value of y from Eq. 7.15 into Eq. 7.14 as

2
Unax = U(:P) forP>1
(7.16)
U(1+P)?
Umin = —5 forP <1

The expression for shear stress can be obtained by substituting the value of u
in Newton's equation of viscosity

— v _ d[yu 1dp a2
T= 'udy_ dy[h Zudx(hy y)]

_, U _ap\ (h _
=l (-2)(y) 017
The shear stress at the center is
T= u% (7.18)
Ex.3

Laminar flow takes place between parallel plates 10 mm apart. The plates
are inclined at 45° with the horizontal. For oil of viscosity 0.9 kg/m.s and
mass density is 1260 kg/m?3, the pressure at two points 1.0 m vertically apart
are 80 kN/m? and 250 kN/m? when the upper plate moves at 2.00 m/s
velocity relative to the lower plate but in opposite direction to flow determine

i) velocity distribution

i) max. velocity Flow
iii)  shear stress on the top plate p:=250 kPa
10 m
Sol. .
Consider section 1&2 from Bernoulli's Egn. IS ,=80 kPa
CHo—_ (7 P2
Ho—Hy=—(2+2)+ (24 2,) N
_( 250000 + 1) +( 80000 + 0) & '\.\.
9.806%1260 9.806%1260 { ~.
H, — H, = —21.234 + 6.475 = —14.759m in 1.414m length e

Since H,is greater than H,, flow will be in down word direction .

0H - _ 14.759 — —10.438

0x 1.414
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ap oH kN/
And —=y—=-10.438 x 1260 *9.806 = —128.97 —~
ax ax

Y_y_ 19y
U h ZuUax(yh }/)

U=—2T h=0.01m,u

-'-uz—my—m( 128967.33)(0.01y — y?)

i)  u=516.4364y — 71648.5y?
To find y at which u is max. set du/dy=0 = 516.486 — 143297.2y or
y = 3.604 %« 1073m
i) = Upe = (516.486 % 0.003604) — (71648.2 * 0.0036042) =
0.9308 =

i) 7, = u( )y 001 = 0.9(516.486 — 143297.2 % 0.01) =
—824.837 N/m

0 9kg

7.5 Pipe of Circular Cross-Section.
7.5.1 Hagen-Poiseuille Flow.

Consider fully developed laminar flow through a straight tube of circular
cross — section as in Fig. 7.4 . Rotational symmetry is considered to make the
flow two — dimensional axisymmetry. Let us take x-axis as the axial of the
tube along which all the fluid particles travel, i.e.

V,#0,V, =0,V =0

Now from continuity equation, we obtain

vy . Vp , OV
or 1 E
This means V. (r,t)

Invoking [ =0,V =0 an =0, and—(any quantitng) = 0]

With Navier—Stokes equatlon we obtaln in the x-direction
Oy _ _19p, (W 10V
Fr p 6x+ (6r2 +r'6r) (7'19)
For steady flow, the governing equation becomes
0%y 1 0V _ 1dp
arz ' rtar udx (7.20)
The boundary conditions are
) Atr =0,V is finit &2% = 0
i)  Atr=R, Vx=0yield Eq. 7.20 can be written after multiplying by r
d°Vy  dVx _ 1 dp
dr? dr ~ u'dx
d ( dvy\ _ 1dp
or E(r ?) ==’ by integration
e L 9124y
dar 2u dx

=0 [for rotational symmetry,%.% = O]
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vy _ 1 dp 4 i i
= o T+ by integration
szi.d—pr2+ Alnr+B

4u dx

Atr =0V, = finite &X=0->A=0
atr=R,V, =0

L a p2

4p Tdx’

=4 (-2 [1-Fl

(7.21)

This shows that the axial velocity profile in a fully developed laminar

pipe flow is having parabolic variation along r.
Atr =0,as such,V, = Vy max

__R? dp
V;cmax —a _a

(7.22)

Figure 7.4: Flow in circular pipe.

7.5.2 Volumetric Flow Rate.
The average velocity in pipe is

R
2nr Vi (r)dr .
Vav. = 5 = f"“nT substitute Eq.7.21
2nR?( dp\[R®? R*
_ 4 \_E)[z 4R2]
or Vg = R

R? dp 1
Vav. = a (_ E) = 3 Vimax = Vimax = 2Vay

Now, the discharge Q through a pipe is given by
Q= T[szzw
Q=nr? (- L)

8u dx
_ _mdl (dp
orQ = 128u (dx)
From Eq's 7.22 & 7.23
P1— P U Vav
% =4 Vmaxﬁ = 32.“?
Eq. 7.26 is known as the Hagen- Poiseuille equation.

(7.23)

(7.24)

(7.25)

(7.26)
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Ex.4
Oil mass density is 800 kg/m® and dynamic viscosity is 0.002 kg/m.s

flow through 50mm diameter, pipe length is 500 m and the discharge flow
rate is 0.19*10° m%/s determine

i) Reynolds number of flow.

i) Center line velocity.

iii) Loss of pressure in 500 m length.

Iv) Pressure gradient.

V) Wall shear stress.

Sol.
_ 4Q _ 4x0.19+107% _ m
Vav, = wd?  mwx(0.05)2 0.0968 s
) R, = Vdp _ 0.0968+0.05+800 _ g
u 0.002

i) Ve max = 2Vap, = 2 ¥ 0.0968 = 0.1936%
11)) From Eq. 7.26
pP1—D U Vav
T = A Vnar g = 32077

32uVgylL 32%0.002%0.0968x 500 N
S PP =t = o = 1239.04—
— 2.478—
iv) 2o PP 129900 PPWT _ 5 478 pa/m
dL L 500 m
V) me= PP = (1239.04) « 2 = 0.03098 -, Eq.7.28

7.5.3 Shear Stress in Horizontal Pipe.
A force balance for steady flow in horizontal pipe as in Fig. 7.5 yields
p1(r?) — py(nr?) — t(2mrl) = 0

orT = % (7.27)
From Eq. 7.27

atr=0t=0

r=R T=r1,

7, = LaP2e (7.28)
Eq. 7.27 is valid for laminar & turbulent flow.

(%) Represent the energy drop per unit weight (k) multiply Eq. 7.27 by

(p9/pg) yields

_ pgr (p1-p2\ _ PghL
=22 ( - )_ 2Ly (7.29)
_ 270l _ 470l
==t (7.30)

T=T19atr =R
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_________ (_)_rf;rﬁg__._.___ﬁ_ R -

p1A p2A

Figure 7.5: Forces on element in horizontal pipe.

7.5.4 Shear Stress in Inclined Pipe.
The energy equation may be written in pipe when related the loss to
available energy reduction 1

2 2
ﬂ""/_1‘|'Z1=&‘|‘V_2‘|‘ Zy + hy pA T~ 5
P9 29 P9 29 1-2 k
Since the velocity head ( ) IS the same : o A
D1—P2
- - 7.31
hf pg +Z1 Zy ( 3 )
s hp=2st A 7.32
hy =g + Az (7.32)

Applying the linear — momentum eqn. in the L-direction

YF,=0=(py —p)A+yALsin0 — tyLP =m(V, —V;) =0

(P) is the wetted perimeter of the conduit ,i.e , the portion of the perimeter
where the wall is in contact with the fluid when the conduit not circular pipe.

L SLTL9 = Zl - ZZ
‘CoLP

P1— D2 _
T + Z1 — Zp = g (733)
From Eq. 7.31& 7.33
LP

;= T;QA (7.34)
From experiment
Tp = ;Lg 2 (7.35)
. — ,Py2lP _ ,LV?

- hp = ATV 1= Y2 (7.36)
Rh=A/P

Rn=hydraulic Radius of the conduit
For a pipe Rh=0/4 ; A=f/4
Where A is the non-dimensional factor, the h, head loss due to friction can be
written as follows,

L 4v?2 L V?
o hy = fTZ?, = fE:—g (7.37)
Eq. 7.37 is the Darcy — Weisbach equation, valid for duct flows of any cross-

section and for laminar and turbulent flow, f is the friction factor f=4 A
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By equating Eq's 7.30 & 7.37

4oL _ o LV?
pgd _deQ
2

7o =12 (7.38)

In Hagen-Poiseuille eqn.
Apd?
Vo = 320l From Eq. 7.26

32uL
Ap
Ap =pg hy — === hy =—
pg
Vo = pg hyd?
Tav T soul
_ 32Vgpul fﬁV_Z
F = pgaz T Jdzg

64
_ (64Va1;ML) _ Py LVay® _ 64 LVay®

2pgd? uw d 2g Red 2g
he = fLla’ _ 64LVa" (7.39)
f 6Cf} 29  Red 2g '
=— 7.4
— (7.40)

It applies to all roughness and may be used for the solution of laminar flow
problems in pipes.

From above equations the laminar head loss as followes
64 EVLZ,, _ 32uLVa, _ 128uLQ

hf(laminar) ~Re d 29 pgd? = pgd* (7.41)
From Eq. 7.22
4VmaxihL 32Vayul
P1— D2 = R2 = dz
Pressure drop per unit weight
hs = 2 _ w for laminar flow (7.42)
pg  pgd
Ex.5

An oil of viscosity 0.9 Ns/m? and S.G. 0.9 is flowing through a
horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of
the pipe is 1800kN /m? , determine:

(1) The rate of flow of oil.

(i) The center-line velocity.

(ili)  The total friction drags over 100 m length.

(iv)  The power required to maintain the flow.

(v) The velocity gradient at the pipe wall.

(vi)  the velocity and shear stress at 8mm from the wall
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Sol.
Area of the pipe,

A= %* (0,06)% = 2.827 = 1073 (m?) Pressure drop in (100m) length of the
pipe, Ap = 1800 kN /m?
i) the rate of flow,Q

32uVyaylL
py—p, = Ap = =
__ Apad?
av " 3au1
103 % 2
"V, = 1800%103%(0.06) — 295 m
320.9+100 d SO 9%1000%2.25* 0.06
Reynolds number, Re = ﬂ Y =135
As Re is less than 2000, the flow is laminar and the rate of flow is,
Q=A*V,=2827+1073%2.25 =636+ 1073 2= —636”—t

i) the center-line velocity , V.
Viax = 2V = 2 % 2.25 = 4.5%
iii) the total frictional drag over (100m) length
From 7, = _ (p1—p2)d

~ T = 1800 * 103 x —— = 270 N/m?
= Friction drag for (100m) length
Fy = ty*x Ay =19 *mdL = 270 * T x 0.06 * 100
F; = 5089 N
(iv) The power required to maintain the flow, P,
P= F; %V, =5089 %225 = 11451 W
=15.35h.p
Alternatively,
P =Q.Ap = 0.00636 * 1800 = 103 = 11448 W

(v) The velocity gradient at the pipe wall, (Z_;L) ;

y=0
—_— (au)
Ty =
dy y=0
ou T 270 _
or(—) =% 270 _ 350 51
0y/y—g K 09

(vi)  the velocity and shear stress at (8mm) from the wall,

(-5 (1-%)

_ _ 1 9p -y 2
Oorv = 4u'ax(R )
Here, y = 8mm = 0.008m
Buty =R-r

~0.008=0.03—7r———>1r =10.022m
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1 1800% 103
*

V(Smm) =+

4%x0.9 100
For linear relation ; = T};’
198 N/m?
Ort= 2—5 xr fromEq.7.27
T = 1800 103 *%= 198 %

(0.03%2 — 0.0222) = 2.08%

—— == Tgmm) =T * % = 0.022 * 503

Table 7.1: Summary of used equations in pipe

270

Velocity in circular pipe.

2

R?/ op r
-5
4u\ Ox R?

flow

Vimax (Max. velocity) Vinax = 2V
. R? / dp\ 1
V., (Average velocity) Vo = 8 (— a) =3 Vinax
. Ap uw  32ul,
Pressure loss along pipe 4= 4Vmaxﬁ =— av
Wall shear stress o = (P~ p2)d
4L
Shear stress at any r _(pimpa)r
2L
Energy losses he = 2ok
Yy =
7™ pgd
Energy loss by friction L LV?
factor F =1 d2g
- 4 Area
Hydraulic diameter dp = -
wetted primeter
. . 64 LV2 32ulV
Energy loss in Laminar ¢ 1aminar = R_EEZ = W

= 128uLQ /mpgd*
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Part-2
Turbulent Flow

7.6 Friction Factor Calculations.
Experimentation shows the following to be true in turbulent flow.
1- The head loss varies directly as the length of the pipe.
2- The head loss varies almost as the square of the velocity.
3- The head loss varies almost inversely as the diameter.
4- The head loss depends upon the surface roughness of the interior pipe
wall.
5- The head loss depends upon the fluid properties of density and
viscosity.
6- The head loss is independent of the pressure.

f=fV.d,p,ue€ém)

€ is a measure of the size of the roughness projection and has the dimension
of a length.

€ is a measure of the arrangement or spacing of the roughness elements.

m is a form factor.

For smooth €e=€’'=m=0 - f=f(V,D,p,u) averaged into non-

. : av
dimensionless group namely pT = Re

For rough pipes the terms €,€' may be made dimensionless by dividing by d
pdV € €/

~f=F (T T ,m) Proved by experimental plot of friction factor
aganst the R, on a log-log chart. Blasius presented his results by an empirical

formula is valid up to about Re =100000
0.316
f= T
Re4
In rough pipe €/d is called relative roughness.

f=F (Re, S) is limited and not permit variation of €'/d or m.

Moody has constructed one of the most convenient charts for determining
friction factors. In laminar flow, the straight line masked “laminar flow” and
the Hangen-Poiseuille equation is applied and from which f = 64/Re
L V? ApR?
h’f =f—-—; Vav =

d 2g 8uL
The Colebrook formula provides the shape of €/d = constant curves in the
transient region

€
_ i 2.51
= —0.861In <3.7 +— ﬁ> (7.43)

Sl-
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7.7 Simple Pipe Problem.

Six variables enter into the problem for incompressible fluid, which are
Q, L, d, hs, V, €. Three of them are given (L, V, €) and three will be find.
Now, the problems type can be solved as follows,

Problem Given To find (unknown)
I Q,L,dV,e hg
I hs, L,d,V, € Q
I hs,Q,L,V, € d

In each of the above problem the following are used to find the unknown
quantity
(i)  The Darcy — Weisbach Equation.
(i)  The Continuity Equation.
(iii) The Moody diagram.
In place of the Moody diagram Fig. 7.6, the following explicit formula

for f may be utilized with the restrictions placed on it
1

£ = 0.0055 [1 +(2000.5 + gfl Moody equation

4x103 <Re < 107&§ <0.01

1.325

T, 1?2
(552
1% yield diff-with Darcy equation
The following formula can be used without Moody chart is

1 69  (e/a\11
7 ~ —1.8log [R—ed + (;) ] (7.45)
Eq. 7.45 is given by Haaland which varies less than 2% from Moody chart.

f= 1076 << <1072 , 5000 <R, < 108 (7.44)

€
D

7.7.1 Solution Procedures.
1- Solution for hy.
With Q, €, and d are known

v do

And f may be looked up in Fig. 7.6 or calculated from Eq. 7.44. Substitution
of (f) in Eq. 7.37 yields h the enrgy loss due to flow through the pipe per
unit weight of fluid.
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EXx.6
Determine the head (energy) loss for flow of 140 I/s of oil v=0.00001
m? /s through 400 m pipe length of 200 mm- diameter cost—iron pipe

Sol.
Re =@ __ 4019 _ gg9197
Do 7(0.2)(0.00001)
The relation roughness is €/D= 0.25/200= 0.00125 from a given diagram by

interpolation f= 0.023 by solution of Eq. 7.44, f=0.0234; hence

LV? 400 | 0.14 2 1
hf = fEZ = 0.023— ] D

0.2 %(0.2)2
hs = 46.58m.

11-  Solution for Discharge Q.

V & f Are unknown then Darcy — Weisbach equation and moody diagram

must be used simultaneously to find their values.

1- Givens eld

f value is assumed by inspection of the Moody diagram

2- Substitution of this trail f into the Darcy — equation produce a trial value
of V.

3- From V atrial Re is computed.

4- An improved value of f is found from moody diagram with help of Re

5- When f has been found correct the corresponding ¥V and Q is determined
by multiplying by the area.

Ex.7
Water at 15 C° flow through a 300mm diameter riveted steel pipe,
€=3mm with a head loss of 6 m in 300 m. Determine the flow rate in pipe.
Sol.
The relative roughness is &d = 0.003/0.3=0.01, and from diagram a trial

f is taken as (0.038). By substituting into Eqg. 7.37 Darcy equation

2
6=00382_Y
0.3 2(9.81)

n V= 1.76?
2
At T=15C° > v =1.13 * 10-6"‘T
2 Re= 22 =178 _ 467278
13 1.13%10

From the Moody diagram f=0.038 at (Re & g)

hpd2.g  |6x0.3%2%9.81
f.L 0.038%300

And from Darcy > V,,, = \/ =176%



Chapter 7 Viscous Incompressible Flows in Pipes 171

6+0.3)(2)(9.81)
(0.038)(300)

“Q=AV=rm (0.15)2J = 0. 1245—

111- Solution for Diameter d.

Three unknown in Darcy-equation f, V , d, two in the continuity
equation V, d and three in the Re number equation
To element the velocity in Eq. 7.37 & in the expression for Re, simplifies the
problem as follows.

L Q
hf =:f~2 azm\?
20(*F)
8L
or d¥= hngnz f=cf (7.46)

2
In which Cy is the known quantity hSZan
f

From continuity ~ Vd? = %

Re =2=201_0& (7.47)

T v mvd d . '
C, is the known quantity n—(i the solution is now effected by the following
procedure

1- Assume the value of f.

2- Solve Eq. 7.46 for d.

3- Solve Eq. 7.47 for Re.

4- Find the relative roughness &/d.

5- With R, and &/d, Look up new f from a diagram.

6- Use the new f, and repeat the procedure.

7- When the value of f does not change in the two significant steps, all
equations are satisfied and the problem is solved.

Determine the size of clean wrought-iron pipe required to convey 4000

gpm oil, v=0.0001 fsﬁ , 10000 ft pipe length with a head loss of 75 ft .1b/Ib.
Sol.

4000

The discharge is Q = —— = 8.93 ¢f's
From Eq. 7.46, d5 = :LQHZ f= 8*7150*03"2‘?535232 f=267.65f

And from Eq. 7.47,

Re — 4@l _ #8933 1 _ 113700
T 7od  m+00001d

And from Table 7.2 €=0. 00015 ft

If f=0.02 (assumed value) , .. d =1.35 ft

Re = 81400

€/d=0.00011 } from Moody chart f=0.0191
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In repeating the procedure, d = 1.37 ft = Re

Therefore

d=1382%12 =16.6in

= 82991 — —> f = 0.019

Values of (V) for water st 60°F (velocity, fs * diameter, in)

00
m 400 6D SO0 1000 000 4000 6000 000

(1] 04 06 0N 1 2 4 6 50 » “© & #0100
| Values of (Vd) for atmospheric air at 60°F | | | | | | [ I | | |nn|m| |
6 50 » I a0 Iﬂ)lﬂl’l I 00 I 0 600 800 100l 2000 4000 |&00 1000 000 | 40000 6000 100000
0.10 T
0.9 aminar-Criticall b1
H Transition
ZONE|
0.08 zone rough pipes
0.07 L
0.06 =S
- = H
0.05 H I‘_.:g__‘ 0.02
SshiamTh: 0015
0.04 — H
ke H nEs=s 001 o
=l H 0.008
== REHEN 0.006
" 0.03 .
- L —— =222 0.004
B B!
2 oo
0.002
E
g 0.02 I+ L - 0.001
~ 28 0.0008
- - 0.0006
i 0.0004
DxssnbiSme it
S TR ] 5 0.0002
] ST <
Cer TR SEEaES = 0.0001
L] - -
NS i 0.000,05
001 EERHH =
0.009 .
il > CEHEELLT 6,000,01
10 2(10%) 3 ¢ 56 Bjgf 21043 ¢ 56 8105 g% 4 56 B1p6 1gF)3 4 56 5|7 2(jT)3 4 56 Sg8
Vd £ £
Reynolds number Re:T F:O.W.Wl E:D.OW.WS

Figure 7.6: The Moody chart for pipe friction with smooth and rough

walls [1].

Table 7.2: Recommended roughness values [1].

Material

Condition

mm

Uncertainty.

«
«

Steel

Iron

Brass
Plastic
Glass
Concrete

Rubber
Wood

Sheet metal, new
Stainless, new
Commercial, new
Riveted

Rusted

Cast, new
Wrought, new
Galvanized, new
Asphalted cast
Drawn, new
Drawn tubing
Smoothed
Rough
Smoothed

Stave

0.00016
0.000007
0.00015
0.01
0.007
0.00085
0.00015
0.0005

0.000007
0.000005
Smooth
0.00013
0.007
0.000033
0.0016

0.05
0.002
0.046
30
20
0.26

* 60
+ 50
+30
+70
*+ 50
+'50
*20
+40
* 50
+50
+ 60

+60
+ 50
+ 60
+40
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7.7.2 General Applications

Application-1
A pump delivers water from a tank (A)( water surface elevation=110m)

to tank B (water surface elevation= 170m). The suction pipe is 45m long and
35cm in diameter the delivered pipe is 950m long 25cm in diameter. Loss
head due to friction hyy = 5m and hs = 3m If the piping are from
pipe(1)= steel sheet metal
pipe(2)= stainless — steel
Calculate the following

i) The discharge in the pipeline

i) The power delivered by the pump.
Sol.
Given

w = 1.007 x 1076 ™
d, =35cm =0.35m; d, = 25cm = 0.25m
Ly =45m; L, =950m
From table 7.2 €,= 0.05 mm
€,=0.002 mm

S1-09 _ 42841074
d, 350
2 — 0.002 — 8 % 10—6
d, 250
Assume f1 = 0 013; f, = 0.008
b= fis s
2 *
5_0013 A Y, = 7662~ Rey = L= 100035
0.35 " 2%9.81 N 1Y 1.007+x10~6

Re1 = 2662363 = 2.66 * 10°

= f L—ZV—2—000895—0 %__3.0m

2 0.25 " 2%9.81 .
V2 = 1.39; Re, = —=2222 = 3.45 + 10°
1%t Trail

(Rel&i—l) — —— f, =0.0138
(Rez&d—) — £, =0.014

hey =5 =0.0138 — LV, =7435" — ——— Re, = 2.58 % 106
0.35° 2 9.81 s
hy,=3=001422 Y% _ _, y =10512— —> Re, = 2.6 + 10°
0.25 2%9.81 s

2™ trial
(Rer&)  f; = 00165, f, = 0.015
1



Chapter 7 Viscous Incompressible Flows in Pipes 174

From f; &f>
V2
hey=5= 001650352 o >V, =68m/s
950 V2
hy, =3 =0.015— 2*9281 - V,=1.01m/s

Re1=2.36*10°
Re;=2.52*10°

3" trial
(Rel&j—l), (Rez&%) - f, =0.0169, f, = 0.015
1 2
From Darcy-equation gives V1=0.6.72 m/s, V>=1.016 m/s.
Q=A1*V1= 0.6462 m®/s
From energy equation

py VP _p W

v 29 v 2 70
727 4 110+ hy, = L2 1 170 +8  Since pi=p;
2+9.81 2x9.81
hp = 65.75 m

P =yQh, = 9810 = 0.6462 * 65.75 = 416.8 kW The power delivered by
the pump.

Application-2

In a pipeline of diameter 350mm and length 75m, water is flowing at a
velocity of 2.8 m/s. Find the head lost due to friction, using Darcy-Eq.&
Moody chart, pipe material is Steel-Riveted kinematic viscosity v= 0.012
stoke
Sol.

2
he=f2.2 ;d=035m,L=75m;V =282
d 2g s
From table 7.2 for steel riveted €=3.0 mm

£-29% _g57%1073
d 0.35
1’% = 10* stoke ~ v= 0.012 %1074
Re = 2=_220%_ _ 816666 = 8.1+ 10°
1Y) 0.012%10
at (Re & £)—- f =0.0358
2
s hp = 0.0358 =22 = 3,0m
0.35 2%9.81

By determine the value of f by Eq. 7.45.

6o e 1.11
= 4 _da_
Reg 3.7

~ —1.8log

\h |
N| = =
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1 8.57%10

;z= —1810g%161¢ ( Y111y = 52646
2

f=0.036 Af =0.0002

Application-3

Oil having absolute viscosity 0.1 Pa.s and relative density 0.85 flow
through an iron pipe with diameter 305mm and length 3048 m with flow rate

3
444 %1073 mT Determine the head loss per unit weight in pipe.

Sol.
v=2= B0 g6 T
A Sm(0.305)? S
Re — @ 0. 61*00335*850 — 1580
i.e the flow |s laminar .
64

f= . = Toeo = 0.0407

2
hf — f—_ — 0.0407 * 304-8 (0.61)

0305 29

=771m

7.8 Minor Losses.

The losses which occur in pipelines because of bend, elbows, joints,
valves, etc, are called minor losses hm. the total losses in pipeline are
h, = hs + hp, (7.48)
Also, others minor losses can be explain as follows,

A. Losses due to sudden expansion in pipe.
From momentum equation
YFx = pQ (V, — V1)
Q= A,
P11 — p2A; = pA, (sz A
Divided by yA4, since A; = A,
P1—D2 _ VE-ViV, o (a)

Y g
From Bermonlli's equation between section 1&2 as in Fig.7.7
ﬁ+£=ﬁ+ﬁ+h
Y 29
P1—P2 _ Vz _
=~ + hon (b)
Equatlng Eq. (a & b)
Vi1V, — Vi- iy h,,
g 2g
Vi-ViV,  VE-VE  2VE-2V, V,—VE+V{

h = —_ =
m g 29 29
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VE=2ViVa+V7 _ (Vi—15)?

hm - 29 2g o (C)
Q= 1?41‘/1 = AV,
V, = A—: /4 substitute in Eq. (c)
1 2
vV, —— — V,
Vi — -V
pPALT —b <« P2 A2
Figure 7.7: Sudden expansion.
Vf—zvlj—zlvl+(3—;vl)2
. hm = 29
V2 (1—22—;+ (3—;)2)
h,, = 20
_VE (A g
b = 2 (1 Az) =K (7.49)

= (1-2 = (-5

. . .od
If sudden expansion from pipe to a reservoir d—l =0
2

-
m — 29
B. Head loss due to a sudden contraction in the pipe cross section.
Q=A4V, = A\, c 2
Cc= Ac/A;

PAy — D247 = pQ(Vo — V) =2 |

~
~ 1

PcAz — DAy = PAz(sz = Vo) e T

Divided by y A, ;

Pc;Pz — sz—chVz o (a) i |
Applying B.E between sections ¢ & 2 c 2

Pc Ve p \&

v + 29 = 72 + ﬁ +hpy, Figure 7.8: Sudden contraction.
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Pc—P2 __ v3-Vv¢  —
TS + hp (b)
V. = % V, , Equating Eq (a& b)
C
Vi-VeVa _ VE-VE
= T2 + hpy

_ V22—VCV2 _ VZZ_VCZ — 2V22_ZVCVZ_VZZ-H/C2
hm = g ( 2g ) N , 2g

_ VE2ve ViV ((A\° 24,
hm = 29 T 2g ((Ac) Ac + 1)

2

_VE[ (1) _
hom 2g [ (Cc) 1 ]
B = K2 (7.50)

m 2g '
—(1_1) i ~ _ 4
K = (C—C — 1) , From experimental, K ~ 0.42 (1 d%)
A, is the cross — sectional area of the vena-contracts
C. is the coefficient of contraction is defined by C. = %
2

C. The head loss at the entrance to a pipe line.
From a reservoir the head losses is usually taken as

0.5V2 . N
h,, = 29 is the opening is square-edged
_0.01V%  0.05V2

~

m

2 if the rounded entrance

g
Table 7.3 lists the loss coefficient K for four types of valve, three angles of
elbow fitting and two tee connections. Fitting may be connected by either
internal screws or flanges, hence the two are listings.
Table 7.3: Head loss coefficients K for typical fittings.

Nominal diameter, in

Screwed Flanged
! 1 2 4 1 2 4 8 20

Valves (fully open):

Globe 14 82 6.9 57 13 85 6.0 5.8 55

Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03

Swing check 5.1 29 2.1 2.0 20 20 20 2.0 2.0

Angle 9.0 4.7 20 1.0 4.5 24 20 20 20
Elbows:

45° regular 0.39 0.32 0.30 0.29

45° long radius 0.21 0.20 0.19 0.16 0.14

90° regular 20 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21

90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10

180° regular 20 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20

180° long radius 0.40 0.30 0.21 0.15 0.10
Tees:

Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07

Branch flow 24 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41
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Entrance losses are highly dependent upon entrance geometry, but exit
losses are not. Sharp edges or protrusions in the entrance cause large zones of
flow separation and large losses as shown in Fig. 7.9. As in Fig. 7.10, a bend
or curve in a pipe, always induces a loss larger than the simple Moody
friction loss, due to flow separation at the walls and a swirling secondary
flow arising from centripetal acceleration.

1.0

(a)

)

Figure 7.9: Entrance and exit loss coefficients,(a) reentrant inlets,
(b) rounded and beveled inlets. Exit losses are K=1.

1.00

0.10

|
| I
1 15 2 3 4 5 6 7 8910

Figure 7.10: Resistance coefficients for 90° bends.
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Table 7.3 gives the losses coefficients for the fully open condition. In
case of partially open valve the losses can be much higher. Fig. 7.11 gives
average losses for three valves as a function of percentage open. The opining
distance ratio h/D as the x-axis in Fig. 7.11 is shown by Fig.7.12 of valve

geometry.

20.00 \

18.00
16.00 \ -0~ |Gate

14.00 -
12.00
\l
K 10.00 2\
8.00
6.00
4.00
2.00 |

=O~|Globe

O

0.00 | . —— A
025 030 040 050 060 070 075 080 090 100

Fractional opening %

Figure 7.11: Average-loss coefficients for partially open valves.

(@) b)

722277
B, OBl |
QA7 2280, "z
R \ — D

(d)

() (e)

Figure 7.12: Typical commercial valve; (a) gate valve, (b) globe valve,
(c) angle valve, (d) swing-check valve, (e) disk-type gate valve.
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Application-4
2
Water, p = 1.94 slugs/ft3, and v = 1.1+ 1075 ’% is pumped between

two reservoir at 0.2 fsis through 400 ft of 2 in diameter pipe and several minor

losses, as shown in figure. The roughness ratio is S = 0.001. Compute the

horse power required.
Sol.

Write the steady- flow energy equation between section 1 &2 the two
reservoir surface:

2 2

By it =B+ )ty + Sk~
Where h, is the head increase across the pump p; =p, , V; =V, = 0,
solve for the pump head

V2 L
hp = 2= 21 + by + S hy = 120 = 20 + (fi+3k)
0.2

_Q_ = It
V—A—%n(i)2—9.17 .

Screwed sm@ L= 120 ft
regular =

12-in
bend radius

Open globe

valve wonofpipe.d:l—zz-n

Now list and sum the minor loss coefficients

Loss K
Sharp entrance (fig, 7.9) 0.5
Open globe value (2 in Table 7.3) 6.9
12-in bend Fig. 7.10 = = 6,= = 0.001 0.15
Regular 90 elbow ( Table 7.3) 0.95
Half — closed gate value ( Fig. 7.11) 3.8
Sharp exit (Fig. 7.9) 1.0
z K 13.3
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Calculate the Re and pipe friction factor

2
Re =2 = 2763 _ 139000

v 1.1%¥1075

For = = 0.001, from the Moody chart read f = 0.0216

9.17% |0.0216(400)
2(322) l (12) 13 3]

h, =100 + 84 = 184 ft pump head
P = pgQh, = 1.94(32.3)(0.2)(184) = 2300

1 h.p.= 550 ftlbf 2300

“P= =42 h.p.
550
For an efficiency 70 to 80% , a pump is needed with an input power about 6
h.p.
Application-5
Water is to be supplied to the inhabitants of a college campus through a
supply main. The following data is given,
Distance of the reservoir from the campus = 3000 m
Number of inhabitance = 4000
Consumption of water per day of each inhabitant= 180 liters
Loss of head due to friction = 18 m,
Co-efficient of friction for the pipe, f = 0.007. If the half of the daily supply is
pumped in 8 hr, determine the size of the supply main (d) .

o hy =100 +

ftlbf

Sol.
Total supply per day = 4000 189 720—
Q = maen 0125_
* 2 * * 2
Assume f= 0.03 wds = LQZ f= w * 0.03 = 6.455 *
hrgm 18%9.81*T
107°
~d=0.1452m
R, == ___209% ___ 108904 = 1.08 * 10°
vd _1'[*1 .007%¥107°%0.1452
€ _ 004641077 _ 3 1684 10 From (R, & <) — = f = 0.0195
d 0.1452 d
d>=42%10""——->d =0.13352m.

Minor losses may be expressed in terms of the equivalent L. of pipe that
has the same head loss in m.N /N
LeV: _ LV
f d 2g - 29
K is the sum of several losses, solving for L, gives L, = KTd (7.51)
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Application-6
I) Find the discharge through the pipeline as in below figure for H=10m,
I1) determine the head loss hy. for Q=60 I/s. 1l1) compare the result of
discharge with equivalent length .
Sol.
The energy equation applied between points 1 & 2, including all the
losses, may be Written

2
) H +0+0=2 +0+o+”2 T 026 + 227
0.2032 2g 29
Loss coefficients (K)
Entrance = 0.5
Each elbow = 0.26
Globe valve (partially open h/d=0.6) = 5.3
2
w Hy = Z—Zg (7.32+502f) ————— (4)
When the head is given, this problem is solved as the second type of simple
pipe problem. If S = % =1.28x1073,f=0.0205

2
10 = ‘2’—9 (7.32 4502 * 0.0205) — —— V, = 3337 =

v = 101*10-6’”—2

€ _0.00128; R, _ (3:337+02032)

(1.01x1079)
From Moody chart at { Re & 2} ——— f =0.0208
Repeating the procedure gives V, = 3.32% ,Re =6.6%10°,and S, f=
0.0209. fromeq. A gives V2=3.31 m/s. The discharge is
0 = V,A, = (3.31) (%) (0.2032)% = 107.34 /s
I) For the second part , with Q is known, the solution is straight forward;

= 6.7 * 10°

v,=2=_2% __ 1852 Re =37x10%and <, f = 0.0212
A (Z)(°'2°32)2 s d
From Eq. A
(1.85)% 85)?
L =28 (6324502 %0.0212) = 2.959 m
2(9.806)

[11) With equivalent lengths Eq. 7.51 the value of f is an approximated, say

f=0.0205. The sum of minor losses is K= 6.32

Kd  6.32%0.2032
Lo =—=——"""—=62.64m
f 0.0205

The total length of pipe is
62.64 + 102 = 164.64m
. L+Le V 164.64 V£
By Darcy equation. 10 = f Tﬁ = fmi

If f=0.0205,V, =343%, Re = 6.9+ 10% and =, f = 0.0203
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Fromeq.A, V, = 3.347%and Q =108.51/s

H=10 203.2 mm —diam. Clean cast-iron @

Water at K
20 C° Globe valve

12m (Partially open)

Standard elbows flanged type

90° regular
V. > ) A
——

\ |<— 30 ::: 60 m 44

Square- m
edge
entrance

7.9 Pipe in Series.

In this typical series—pipe system as in Fig. 7.13, the H (head) is
required for a given Q or the Q wanted for a given H. Applying the energy
equation from Ato B including all losses gives

2
H+0+0=0+0+0+K 2+ f1L1V1 “’12;’2) + f2L2V2 +3£ (152)
From continuity egn.
V1d% = Vzdg
I, is eliminated from eqgn, so that
_n Tt N AN A
H= 29 { [1 ] d, (dz) + (dz) } (7.53)
For known Iengths and sizes of pipes this reduces to
V2
H = i (Ci+ Gfi + G3f3) (7.54)

Cy,C, & C3 are Known
e Q is given then R, is computed and f's may be looked up in Moody
diagram then H is found by direct substitution.
e Foragiven H, the values of Vy,f1,f> are unknown in Eq. 7.54.
By Assuming values of f;& f, (may be equaled) then V; is found 15¢ trial
and from V; — —— Re's are determined and values of f,& f, look up from
Moody diagram.
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And at these value , a better V; is computed from Eq. 7.53 since f varies so
slightly with Re the trial solution converges very rapidly. The same
procedures apply for more than two pieces in series.

Water

Figure 7.13: Series pipe.

7.10 Equivalent pipes.
Two pipe system (in series) are said to be equivalent when the same
head loss produces the same discharge in both system. From Darcy equation.

L, 8Q2
fl (dzn) =h di 7'[21

And for a second pipe

L, 8Q%
fZ dZS 1.[22
For the two pipes to be equivalent
hsy = hy, Q=0
After equating hs; = hg, and simplifying
Al _ falz
a;  d3
Solving for L, gives
_ g h()
L= L2 (d) (7.55)

Ex.9
From Fig. 7.13, K, = 0.5,L; = 300m ,d; = 600mm, €;,= 2mm, L, =

2
240m,d, = 1m, €,= 0.3mm,v = 3 * 10-6’"T and H = 6m. Determine
the discharge through the system.
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Sol.
From the energy Eq. 7.53
6= [05+flﬂ+(1 0.6%)? + f, 22 0.6* + 0.6*

After S|mpI|fy|ng
6 = V_1 (1.0392 + 500f1 + 31.104f,)

e1

From o= 00033 = 0.0003, and Moody diagram values of f 's are

assumed for the fuIIy turbulent range.
fi =0.026 f, =0.015
By solving for V; with these value , V; = 2.848%,V2 = 1.025%

Re, = 2'38*“1%*_"6'6 = 569600
Re, = 22510 = 341667

3%10~6

At these Re's and from Moody diagram, f; = 0.0265, f, = 0.0168, by
3
solving again for V,,V; = 2.819? and Q = 0.797%

Ex.10

Solve Ex.9 by means of equivalent pipes.
Sol.

First by expressing the minor losses in terms of equivalent length, for
pipe 1, since K=Ke+(1-(d1/d2)?)?

Kidy _ 0.91%0.6

— _ 2\2 — o — =
K;=05+((1-0.6)"=091 = Lgy = = ooz 21m
szz _ 1%
Forpipe-2 K, =1 ————> Lo, = A —0015—667m

After selectingf; & f, . The problem is reduced to 321m of 600-mm diam. &
306.7 m of 1-m pipe diam.
By expressing the 1-m pipe terms of an equivalent length of 600-mm pipe, by
Eq. 7.55

2 d;\° 0.015
L, = % L, (d—z) = 306. 7@(7) =13.76 m
Now, by adding to the 600-mm pipe, the problem is reduced to 334.76m of

600-mm for finding the discharge through it, €,= 2mm, H = 6 m.
334.76 V2
6=f
0.6 2g

0.6
f =0.026,———> V = 2.848 —> Re = .848 *m = 569600

From Re and 2— = 0.0033 from Moody diagram f=0.0265
from above equation

3
V = 2821 % - Q = (0.3)2(2.821) = 0.798 mT
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7.11 Pipes in Parallel.

The second type of pipe- system is the parallel flow type, in this case as
shown in Fig. 7.14 the head losses are same in any of the lines and the total
flow is the sum of flow rate in each pipe.

The minor losses are added into the lengths of each pipe as equivalent
lengths. From Fig. 7.14 the conditions to be satisfied are

hpv = hyy = hys =P+ 7, — (%B+ Zp) (7.56)
Q=0:+0,+0Q3
%—:\
2 X
Ae —_— B

Figure 7.14: Parallel pipes system.

z, & z are the elevations of point A&B.
Q is the discharge through the approach pipes.
Two types of problems occur
1) The elevations of HGL(hydraulic grid line) at A&B are known, to
find the discharge.

2) Qis known, to find the distribution of flow and the head loss, size of
pipe, fluid properties and roughness's are assumed to be known.
Case-1. as the simple pipe problem. Since, head loss is the drop in HGL.

These discharges are added to determine the total discharge.
Case-2. The recommended procedure is as follows.
1- Assume a discharge Q', through pipe 1.
2- Solve forh’s4, using assumed discharge.
3- Using h'fy, find Q';,Q'5 .
4- With the three discharges for a common head loss, now assume that
the given Q is split up among the pipes in the same proportion as
Qlll QIZI QI3 ) thus

U0 Q,=

Q,
T3

zqQ

Q'3
zqQ

Q4 Q; Q3= Q (7.57)
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5- Check the correctness of these discharges by computing hyy, he,, hys
for the computing Q4, Q,, Q5 .
Ex.11
In Fig. 7.14, L, = 3000 ft,d, = 1 ft,€;= 0.001 ft
L, = 2000 ft,d, = 8in,€,= 0.0001 ft
L; = 4000 ft,d; = 16 in,€3= 0.0008 ft
2

p=20028, v= 0.00003 2=
pa =80 psi,z, =100 ft,zp = 80 ft.
For a total flow of 12 cfs, determine the flow through each pipe and the
pressure at B.
Sol.
For pipe-1-
Assume Q = 3 cfs ; then V{ = 3.825

. ; _ 3.82x1
. Re; = =
0.00003

127000
= 0.001 } From Moody chart f; = 0.022

dy
3000 3.822

h}l =0.022——=14.97 ft
1.0 64.4
For pipe-2-

, 2000 V2
1497 = J2 ee7 zzg _____ (@)

Assume f, = 0.020 (Recomended fully turbulent flow)
4014241
0.00003

= 89000

then V; = 4015 — —— Rej =
% = 0.00015

2
From Moody chart > f, = 0. 019
Then from Eq. (a) V, = 4. 11—— —— Q; = 144 cfs

For pipe -3-

, 4000 V42
1497 = fi—— ;g ————— (b)

Assume fi =0.019 then V§ = 4015 — —— Rej =
= 0.0006

3

From Moody chart. At (Re§ &%)___) f; =0.02 from Eq.(b).
3

__4.01%1.333
0.00003

= 178000

Vi =40L8 0, =56¢fs
The total discharge for the assumed conditions is

20Q'=3.0+1.44+5.6 =10.04cfs
From Eq. 7.57
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01 _3.00 _
Q1 =550 =150, 12=3.58¢fs
szﬁ 12 = 1.72 ¢fs
Q3 =m 12 —67CfS
Check the values of hfl, hto, hys
3.58 ft
V= 1= .56—— —— Re;,— = 152000}—— f; = 0.021
7 S d1
hr=20.4ft
1.72 ft €,
Vo=—f= =493 ——>—Re, = 109200}—- £, = 0.019
§ 2
hi,=21.6 ft

Vs = 57 = 4. 8” — —3 Re; = 213000}—— f; = 0.019f,
9
hs=20.4ft

is about midway between 0.018 & 0.019. to satisfy the condition hy; =
hfz = hf3
~if f, =0.018 then hy, = 20.4 ft satisfying .
To find ps
pa —PB
St ="tz hs
144

£ =80 % ot 100 — 80 — 20.4 = 178.1ft

In WhICh the average head loss was taken. Then

178.1x64.4 =796 pSl

be ="
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Problems.
P7.1 Two parallel plates kept 100mm a part have laminar flow of oil between
them with a maximum velocity of 1.5 m/s Calculate
i) The discharge per meter width.
i) The shear stress at the plates.
iii)  The difference in pressure between two points 20m a part.
iv)  The velocity gradient of the plates.
V) The velocity at 20mm from the plate.
Assume viscosity of oil u = 24.5 poise.

P7.2 A liquid of viscosity oil 0.1N.s/m? is filled between two parallel plates
10mm a part. If the upper plate is moving at 2m/s and the pressure
difference between two sections 10m apart is 9.81kN/m?. Find the
relation of velocity and also determine the shear stress on the moving
plate.

P7.3 What is the pipe diameter which must be used for oil flow rate
0.0222m3/s at 15.6 C °the energy loss per unit weight h; = 22.0m for a
horizontal pipe with length 1000m. Using ©=0.00021m?/s & relative
density= 0.912kg/m?,.
P7.4
a) Calculate the shear stress at the wall of pipe if pipe diameter is
305mm and water head loss is 15m per weight of 300m length.

b) Calculate the shear stress at a point 51mm from centerline axis of
pipe.

c) Determine the average velocity when f=0.05.

P7.5 The dynamic viscosity of oil is 0.1Pa.s and relative density is 0.85. The
oil flow rate is (44.4 * 10~3)m?3/s through a pipe with 305mm diameter
and 3048m length. Determine the energy loss per unit weight.

P7.6 A heavy oil flow from A to B through a horizontal pipe of cast—iron
with 153mm diameter and 104.4m length. The pressure at section A is
1.069MPa and at B is 34.48kPa. The kinematic viscosity of oil
412.5*%10°m?/s and relative density 0.918. Determine the flow rate.

P7.7 The distance between two point A&B along pipe line is 1224m, pipe
diameter is 153mm. Point B level is above point A about 15.39m . The
pressures at A&B are 848kPa and 335kPa respectively. If the pipe
manufacturing from wrought iron determines the discharge of oil flow
between A&B, take v=3.83*10°m?/s, p=854kg/m?3.
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P7.8 Calculate the energy loss per unit weight in cast-iron pipe with 278mm
diameter and 450m length when the flow are
a)  Water at 15.6C °and velocity is 1750mm/s.
b) Oil at 15.6C° and same velocity, take, vwater=1.13*10°m?/s,
Loil=4.41*105m?/s.

P7.9 Determine the diameter of wrought iron pipe when the water flow rate is
1.25m?%s and pipe length is 3225m. The drop in hydraulic grad line is
68.8m.

P7.10 The parallel galvanized—iron pipe system as in figure delivers water at
20C °with total flow rate of 0.036m%/s. If the pump is wide open and
not running, with a loss coefficient k= 1.5, determine

a) The flow rate in each pipe.
b) The overall pressure drop. L=60m.Dy=5cm

©=0036 m¥s

— -

L,=55m, D,=4cm

P7.11 Show that the discharge per unit width between two parallel plate
distance (t) a part. When one plate is moving at velocity U while the
other one is held stationary for the condition of zero shear stress at the
fixed plate is g=Ut/3.

P7.12 An oil of viscosity 9poise and S.G.= 0.9 it is flowing through a
horizontal pipe of 60mm diameter. If the pressure drop in 100m
length of the pipe is 1800kN/m? determine.

i.  The rate of flow oil.
ii.  The centerline velocity.
iii.  Total frictional drag over 100m length.
iv.  The power required to maintain the flow.
v.  The velocity gradient at the pipe wall.
vi.  The velocity and shear stress at 8mm from the wall.
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P7.13 Oil flow in the pipe as shown in the figure has S.G.= 1.26 and
viscosity 1.5N.s/m? and consider the head of pump is 40m. Find the

flow rate in the pipe, Hint (the head loss after the pump is enter in
calculation).

P7.14 Find the head loss of flow through a pipe the flow rate in the pipe is
200L/s, and the pipe made from stainless steel. The fluid has S.G. = 0.9
and dynamic viscosity 0.07 N.s/m?. The diameter of pipe is 300mm and
length of pipe is 200m.

P7.15 Oil flow through a pipe has 300mm diameter commercial steel pipe. If
the head loss for 400m pipe length is about 10m. Determine the flow
rate in the pipe. Consider S.G.=0.9, £=0.09 N.s/m?.

P7.16 The system in the following figure consists a tank volume 20m? and is
filled after 1000s. If the friction in pipes is 0.03 and €=
0.000075 m find,

i) The pressure developed by the pump on its delivery side.
i) The power delivered to water by the pump.
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P7.17 Three pipes of diameters 300mm, 200mm and 400mm and lengths
450m, 255m and 315m respectively are connected in series between
two tanks. The difference in water surface levels in two tanks is 18m.
Determine the rate of flow of water if the coefficients of friction for
three pipes are 0.03, 0.0312 and 0.0288 respectively considering

i) Minor losses.
i) Neglecting minor losses.

P7.18 Solve the above problem by the equivalent pipe technique consider the
diameter of equivalent pipe is 0.2m and f=0.0312. Assume with
minor losses.

P7.19 Two pipes have diameters 200mm, 250mm and lengths 200m and
150m respectively connected in parallel as shown in figure. If the
total flow rate is 0.1m%s and the points (1) and (2) have same
elevation and same diameters calculate

)} the flow rate in each pipe.
i) pressure drop between (1) of (2) assume the fluid is oil has
S.G.=0.9 and dynamic viscosity = 0.002N.s/m? and € for two

pipe is 0.25mm
Pipe—l , d1, L,

— 1 2 —>

Pipe—2 , dz, L,

P7.20 the following figure consists of 1250m of 5.8cm cast-iron pipe, two
45 ° regular screwed type and four 90 %crewed long-radius elbows, a
fully open screwed globe valve and a sharp exit into reservoir. If the
elevation at point 1 is 425m, what gage pressure is required at point 1
to deliver 0.0045m?/s of water at 25 < into reservoir?

Elevation
500 m
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CHAPTER

Introduction to Boundary
Layer

8.1 Boundary Layer Definitions and Characteristics.
Boundary Layer is a small region developing around a boundary surface

of body, in which the velocity of the flowing fluid increase rapidly from zero
at the boundary surface and approaches the velocity of main stream. The
layer adjacent to the boundary surface is known as boundary Layer (B.L.).
Firstly Introduced by L.Prandtl in 1904. Fluid medium around bodies moving
in fluids, can be divided into following two regions

(1) A thin layer adjoining the boundary called B.L where the viscous
shear takes place.

(i) A region outside the boundary layer where the flow behavior is
quite like that of an ideal fluid and the potential flow theory is
applicable.

U, : is the velocity at the outer edge of the B.L.

&: is called the dynamic B.L thickness where u=0.99U., as shown in Fig. 8.1.
T,, : is the wall temperature where the fluid immediately at the surface is
equal to the temperature of the surface.

67: 1s the thermal B.L thickness, where the temperatures are changing as
T=T,aty=0T=T,aty = 6r

In dynamic B.L. u=u(y) u=0aty=0;U=U, aty =6,

6 =6(x) and 6r = 67(x)

To = “(Z_z)w is the shear stress at the wall. (8.1)

The displacement of the streamlines ( ,) in the free stream as a result
of velocity deficits in the B.L is known the displacement thickness. The
momentum layer thickness ( 6 ) is the equivalent thickness of a fluid layer
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with velocity U, with momentum equal to the momentum lost due to friction
, and is defind as the momentum thickness 6.

— (9T
qw = —k (6y) is the heat flux at the wall. (8.2)

w

Both ( 7, q,,) are function of distance from the leading edge

Ty = Tw(x)' Gw = quw(x)

P=Py

Figure 8.1: Growth of a boundary layer on a flat plate.

8.2 Boundary Layer Theory (Flow over Flat Plate).
For flow over a flat plate with zero pressure gradient, the transition
process occurs when

Re = Uf}xL =3%10% . We assume that U, = 1.0% over a thin plate 10
long Recriticar = 3 * 10°
Re = M — LO*fo = 3« 105

v 1.6x10

x; = 4.8m . From Fig. 8.2, the following cases can be show.
(1)  The thickness of B.L. (&) increases with distance from leading edge
x,0 ——— 6(x)
(i) & Decreases as U increases.
(i) & Increases as kinematic viscosity v increases.
(iv) to= M(%) ; hence T, decreases as x-increases. However, when B.L
becomes turbulent.

V)IfRe = % < 5% 10°B.L is laminar (Velocity distribution is parabolic)
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_ Uxx

If Re = - > 5%10°> B.L is turbulent on that portion (Velocity
distribution follows log law as a power law).
vi) The critical value of % at which B.L change from laminar to turbulent

depends on:
e Turbulence in ambient flow.
e Surface roughness.
e Pressure gradient.
e Plate curvature.
e Temperature difference between fluid and boundary.

U
8-L
\__———- = u=099U
Large viscous -7
displacement . -
____y
S S u<U
//
U [ L ]
- \
Re, =10 3 ==
\\
\\\ Vlsqous
S, region
\\\\\ — )
Inviscid region — — = — _ _ -
U
(a)
Small
displacement
effect 5‘{ o
v b WS
R—.I07 = u<U
C = — ——— -
I—o X S - !'50_"5_ U
Laminar BL Inviscid
Turbulent BL. B0 '

Figure 8.2: Comparison of flow past a sharp flat plate at low and high
Reynolds numbers
(@) Laminar, low —Re flow; (b) high-Re flow.
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8.3 Displacement Thickness (64) of B.L.
Consider the mass flow per unit depth across the vertical line y=0 and
y = y; as shown in Fig. 8.3.
A= actual mass flow between 0 and y; = foy toudy
B= theoretical mass flow between 0 and y, if B.L were not present
_
B= fo ! P Uoo dy
B-A= decrement in mass flow due to presence of B.L, i.e (missing mass
— (M1
flow)= [ (p., U, — pr)dy — — — ()
Express this missing mass flow as the product of p,, U,, and a heigh (64)
that is
Missing mass flow = p, U, 64 — — — (b)
Equating Eg's (a & b)
P Uoo 6d = foyl(poo Uoo - pu)dy
ba= [ (1-0-)dy  ifp=p.&y =0

t g = JP(1-2)dy (8.3)
Physically;

1) Missing mass flow

2) Deflected the streamline upward throught a distance &,
~ 64 Is the distance through which the external inviscid flow is displaced by
the presence of the B.L.

External Streamline

V1 Streamline
i E UssPoo
i EE— Uep:c ! Edge of
| | B
1 : u
| i o)
: | P
I —
(a) (b)

Figure 8.3: (a) Hypothetical flow with no B.L.(inviscid case).
(b)Displacement thickness in actual flow with B.L.
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8.4 Momentum Thickness (6).

To understand the physical interpretation of 6 as the momentum
thickness. Consider the mass flow across a segment dy as in Fig. 8.4, given
by dm = pu dy then
A= momentum flow across dy = dmu = pu?dy — — — (a)

If this same elemental mass flow were associated with the free- stream
velocity, where the velocity is U, then
B= momentum flow at free stream velocity associated with dm
=dmU, = (pudy)U, — — — — — (b)
Hence, B-A= decrement in momentum flow (missing momentum flow)
associated with mass dm
= (pu U, — pu®)dy = pu (U, —u)dy — — — (c)
The total decrement in momentum flow across the vertical line from y=0
to y = y; is the integral of Eq. (c)
~ missing momentum flow = foyl pu(U, —u)dy — — — —(d)
Assume that the missing momentum flow is the product of p, U2 and a
height 6. Then
missing momentum flow = p, U340 — — — —(e)
Equating Eq's( d& e)
P, U260 = foyl pu( U, —u)dy

o 0= OylpopO—Zw (1—%)61}/ ifp=p, andy, =6
. _ (S u u

~ 6 is an index that is proportional to the decrement in momentum flow due
to the presence of the B.L. It is the height of an ideal stream tube which is
carrying the missing momentum flow at free stream conditions.

8.5 Energy Thickness(d,).

Energy thickness is defined as the distance, measured perpendicular to
the boundary of the solid body, by which the boundary should be displaced to
compensate for the reduction in kinetic energy K.E. of the flowing fluid.

The mass of flow per second through the elementary strip= pu dy

K.E. of this fluid inside the B.L. = % mu? = % ( pu dy)u?
K.E of the same mass of fluid before entering the B.L.
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= % ( pu dy)UZ ; Loss of K.E. through elementary strip is equal to
=~ (pudy)U2 - (pu dy)u?
=~ (pw) (U2 — u?)dy
~ Total loss of K.E.of fluid = ff% pu(U2 —u?)dy — — — (i)
Let 6, = distance by which the plate is displaced to compensate for the
reduction in K.E. then loss of K.E. through §,0f fluid flowing with velocity
U, as follows
=~ (p U6)U2 —— — — — (i)
Equating Eq's (i) and (ii), we have
~ (pU 6)U% = f(f% pu (U2 — w)dy
1)
or,8, = U_lgg J, u (U? —u?)dy

be= Jy o (1- 3—00) dy (8.5)

Ex.1

The velocity distribution in the B.L. is given by : Ul = %, where u is the

velocity at a distance y from the plate and u = U at y = 8,6 being B. L.
thickness. Find
(1)) The displacement thickness (ii) the momentum thickness (iii) the energy

thickness and (iv) the value of 6, /6

Sol.
Velocity distribution Ui = %

Q) the displacement thickness 8,
b= [7(1-2)dy
= [y (1-3) @y
=y -3
8y = (5——) s-2=2

26 2 2
(i)  The momentum thickness, 6:

0= fy 5 (1——)dy
)
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52 53 1)
9 = [— —_—— e
286 362 2

(iii)  The energy thickness , &,:
S 2
G = lw (1 - 3—2) dy

)
3 6

(iv)  The value of % =

ool o
I
w

Ex.2
The velocity distribution in the boundary layer is given by
v_3y_1y°
U 28 262
(1) The ratio of displacement thickness to B.L thickness (%d),

Calculate the following,

(i)  The ratio of momentum thickness to B.L thickness (%).

._ _ (6 u _ (6 3y , 1y?

) a= [ (1-p)dy =L (1-22+3%)dy
_ 3 y? 1y3‘S 362 1 &8

da=ly-3G+imm, =T i
_(s_35.8\_5 8a_ 5

5d—(5 46+6)_12 5 12

§(3y 1y2)( 3y  1y?
= 22X ) (1 =22 422
0 fO (26 262 26+262 dy
5(3 9y2 3 1 3 1
0= (_z__y_ 3y 1y _y___y_)d
0 \28 462 463 262 463 46%

_ 532_(2£ lﬁ) (iﬁ 3 y_3)_ly_4]
0= [25 482+282 + 483+4'83 454 dy

_[E 26 4 362 ' 2 483 4 5684
3 62 11 &3 3 &4 155]

3 2 11 3 3 4 1 5
. A y _*y_]
0

—_ % — — — —_—

— _*_ —
2 26 4 362 2 463 4 564

3 11 3 1 19 7] 19
=(Go-To+is-—0)=0-o5=2>
2 12 8 20 120 1) 120



Chapter 8 Introduction to Boundary Layer 200

8.6 Von Karman Integral Equation.
From the 2" law of Newton's and momentum equation for a C.V as
shown in Fig.8.4 the following equations can be written

YF = % J.,p Vdv + Jos pV(V.n)dA.

YE =p (u +6—udx)2 dy — pudy + p (v +Z—;dy) (u +g—; dy) dx — puvdx
YE = [u +2u— dx +( dx) ]dy—puzdy+pvudx+

pv— dydx + p u—dy dx + pzv Ju (dy)? = dx — puv dx

YFE, = (2u—+ u—+ v )dydx

After disregarding second — order terms & 2—; = - Z—z from C.E.

~ 2 F, = p(u—+ v )dxdy (8.6)
The summation of forces on C.V may be written as

Y F,=pdy— (p+a—p dx)dy+ (’L’x-l-% dy)dx—rxdx

YE. = pdy —pdy — —dxdy + 1, dy + dydx — T,dx

SF=(-2+ a”‘) dxdy (8.7)
Equating Eq s (8.6 &8.7)
P (ua— + v ) dxdy = ( g—x ar") dxdy (8.8)

Figure 8.4: Distribution of pressure forces on control volume.
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The shear stress is very nearly equal to
Ty = ua—”; Substituting in Eq.8.8 gives
= 1 (1) 3u
'0( + 6y) T pox + (p) ay? (8.9)

Table 8.1 Masses and momentum fluxes on control volume faces

Surface | Mass flux Flux of x-momentum
2
1-2) P(U+Z—Z dx)dy p(u+3—l;dx> dy
(3-4) pu dy pu*dy
(2-3) ov dv ou
p<v+@ dy)dx p<v+@ dy)(u@ dy)dx
(4-1) pv dx pv udx

From the Integral method of momentum equation for Von Karman
integral as follows

fy (uot+ v)dy = [f -2 dy+ [} v gy (8.10)

Where his an undeflned dlstance from the waII to outside the boundary layer.
Integrating the second term in the integral by parts, we have

h du n h ov
o v5, vl =lvuls — Jyug dy ————(@
From C E, vaty=his given by ;
v = fhav _ haudy ————(b)
Substitute Eq. (b ina) and u = U, aty =h
[fo”v—dy Uo fy Z=dy+ [y ulsdy ————(c)
CASE (A) a__
Substitute Eq. (c) in EQ's (8.9& 8.10) and neglecting g—z =0
h u
fop(u_ PV Uooax)dy__
h
e (e -v,2)dy=-1,  ----- (e)
Jy (U a2 —)d =t ————- 0
0 ,D Ax y 0

2
Slnce— = 2u 5
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o ((Ve3) - D) dy =7,

To=p;—xf0hu(Uoo—u)dy since h=46

=pi fgu(U —u)dy
= o (1) (8.12)
= (8.12)
Since 6 = [ o= (1- —) dy (8.13)

Eq. 8.13 is the Von Karman equation without pressure gradient dp/dx=0
CASE(B) Z#0

When the pressure gradient in Eq's (8.9 or 8.10) is included and from adding
itin Eq. (e) as followes

_%Z_Z = U, —= dU°° from Bournalli's Equation
h dUc
NOWf p (—U —+ Zu— U — ) dy = =71 (8.14)
auoo
(u Uoo) = Uy + o
- ‘;_” = (u U ) —u a;]°° Substituted in Eq. 8.14 after multiply by (-1)
an U 0 = D
f [2 ——U W_Q(uUm)] dy = P
ou ou?
In above eqn. 2”5 =57
f [u(u— ]dy—dU—wf(U u)d)’:_%o
0=1J Uoo (1 __) dy
6a = | (1 __) dy
.-.%:—(UZ 0) + U, g2
p—U2 d9+9 2U dUoo_l_U 5ddU°°
z=U2ﬁ+(29+5)U Do (8.15)
p © dx d ® dx .
We assume
Cr = dH=-—>"
= p an

Cr is the frlctlon factor and H is the shape factor.
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1 dUe

LEr_ a8
s L= 02+ H) (8.16)
From Eq's (8.15 and 8.16) the case of Z—Z =0 &d;—x” =0
No gradient of pressure along the x-axis
To _40 _1
UL a2 cf (8.17)

8.7 Approximate Solution to the Laminar B.L.
We have four conditions that proposed velocity profile should satisfy on
flat plat with zero pressure gradients.

u=0aty=20
u=Ugaty=96
ou
a—Oaty—c?
9%u
a—yz—Oaty—O

Let Ui = A+ By + Cy? + Dy3 is a cubic polynomial will satisfy the four

conditions.

From above conditions

Aty=0,u=0

% =0=4  —————- (@)

Aty =6 u="U,

—=1=B6+C6?+D5® ————— (b)
ou

At y = 6 % =0

ou _ 2

ay—B+2cy+3Dy

B+2C5§+3Ds2=0 0 0o————— (¢)

Aty=0

9%y

= 0=20+6Dy———>C=0 ————(d)
FromEq. (c) > B=-3D§%2  ————— (e)
From Eq. (b) B=§—D62 -——=(
Equating (e & f)

~3D§2 =~ — D&? ————D=—— >

283 26

Hence a good approximation for the velocity profile in a laminar flow is
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w _3(v) _1(2)

U 2 (6) 2 (6)

Let us now use this velocity profile to find §(x)and ty(x). From Von
Karman's integral Eq's (8.11 & 8.12)

pfjoﬁo = ;x 06 Ul:o (1 __) dy

3
Assume the velocity take the following form — = z—z — 2% in the
B.L. Calculate the thickness and the wall shear.

pf]o2 _dx 6Uu (1__)dy

‘af( -5 (1 -FR) o

_d (8 Ez__ Wy 3wty
Eo dx f 482 + 45% 263 + 464 466) dy

_ 4 sy _w ety o
pU2 - dxf ( 462 + 48% 263 466) dy
oAt ot ef oy ]5
pUZ, 48 125Z 2084 8563  28656]
To _ _ 2 ___i
pUZ dx[6 6+ 6 8 28]
o —290.1392) = 0.1392 ¥
pUS dx dx
~ Ty = 0.1392 pUZ d§/dx (8.18)

At the wall we know that 7, = uZ—;‘| or using the cubic profile
y=0
ou — 2 _p_ 3
o =B+ 2Cy+ 3Dy =B = (25)U°°
3

" Ty = (Uoo 5) (8.19)

Equating the foregoing expression (8.18 & 8.19) for 7,(x), we find that

0.139pU% = = 4t (Voo )
3

6dé =

dx = 10. 8—dx (8.20)
0139pUoo
From using at § =0 at x = O (the leading edge) Eg. 8.20 is integrated to
give
6 = 4.65\/vx/U, multiply byﬂ
Vx
§ = 4.65

J;‘_ex (8.21)
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Where Re, is the local Reynolds number. Substituted Eq. 8.21 in Eq.

v

8.19 giving the wall shear as 7, = 0.323 pU%

[ce]

0.323pU3%
To = PYs

(8.22)

Rey
The shearing stress is made dimensionless by dividing by % pUZ. The local

skin friction coefficient Cr its
0.646 0 646

—pU2 - / ~ JRex
If the wall shear is integrated over the length L, the result per unit width
is the drag force.

Fp = [ Todx = 0.646 pUs, \/U,, Lv  Where 1, from Eq. 8.22

(8.23)

0.646 pUZL
Fo =G ©29
OrF, = fOL Todx = To.L = CF.%pUi,.L since 7, from Eq. 8.23
" Cp= Fp _ 0646 pUS.L _ 1.292 (8.25)

- %pUgo.L h %p UZ%,.L\/[Rey, "~ JRe
Where Re; is the Reynolds number at the end of flat plate.
Ex.3
Assume a parabolic velocity profile and calculate the B.L thickness
and the wall shear. Compare with those calculate above.

Sol.
The parabolic velocity profile is assumed to be
U— = A+ By + Cy*?

With three conditions

u=0aty=0u=U,aty=6; g—§=0aty=6-'-A=O
1=A+BS§+C6%=B6+C6%;
0=B+C=*26

Then A=0; Bzg ; Cz—é. The velocity profile is

Ve YsTe@ T T T T @)

This is substituted into Von Karman's integral equation (8.11 ) to obtain
T _d 502y yN\[ 2y, »°

pU2 _dxf (6 52)[1 + ]dy

3

f [ __+__y_+2L_y_]dy
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_d [Zyz 4y® _|_2y4 y3 _|_2y4 ¥ 1°
T dxl2s 382 ' 463 352 483 564l

d 4 1 1 1 1
=Z|s-26+26-15+36—15]

dx 3 2 3 2 5

d 4 1 1

=Z[1-2+21-242-3s
dx 3 2 3 5

2

:i(30_25_3)6 — iié‘

dx 15 dx 15

2 as

s Te=pUsb - — = (®)
We al __0u

e also use 7y = u5| y=0
From Eq. (a)

2

To=U Uoo E _____ (C)

Equating Eq's (b & ¢) we obtain
2 uz %= 2
15 prdx_”U“’ 5

6dé = ISUL dx Using 6 = 0 at x = 0 after integration

[e]

[y 8ds = 15 dx

¥ o15r
2 Uso
~ § =548 |—= ————(d)

This is 18% higher than the value using the cubic profile, the wall shear is
found to be

T, == gypstitute Eq. (d)

1)
_ 2uUqx Uoo
07 543 vx
_ 2 [ v 0365pU%
7o = 0.365 pU¢& Um = JRe

This is 13% higher than the value using the cubic velocity profile.

8.8 Solution of Turbulent B.L. Power — Law Form.
The power— law form is
7 Re, < 107

1/n
o (z) n= 8 107 < Re, < 108 (8.26)
9 108 < Re, < 10°
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The Balsius formula is an empirical relation for the local friction coefficient

1

_ v Y
Cr = 0.046 (Uoo ) (8.27)
T 1
We have C; = %p—f]%o — = 10 =Cr5pUG
1/4
& 7o = 0023 pU3, (5) (8.28)

Substitute the velocity profile in Von Karman's integral Eq. 8.11 with Re, <
167

=t " (- @) )|
7 2 ds

7o = — pUS (8.29)
72 dx
Equating Eq's (8.28 & 8.29) for 7,, we find that
1

1 1
57 ds = 0.237 (-)" dx

Uco
Assuming a turbulent flow from the leading edge L>>x; , from integration
the above eqn.

%% = 0.237 (i)mx

After taking the root (4/5) and multiplied by (x/x)'® gives the following

5 = 0.38x (Re,)~ /5 (8.30)
Substituting Eq. 8.30 for ¢ in to Eq. 8.27 we find that

C; = 0.059(R,)™*/®> for Re <107 (8.31)
The drag force = Fy =10 A = Cf% pUZ (LW) (8.32)

Where W is the width of plate and Cr from equation 8.31.

Ex.4
Estimate the boundary layer thickness at the end of a 4-m-long flat

surface if the free-stream velocity U,, = 5?. Use atmospheric air at 30C" .

And predict the drag force if the surface is 5m wide
a) Neglect the laminar portion of the flow
b) Account for the Laminar portion using Re.,;; = 5 * 10°.
Sol.
a) Let us first assume turbulent flow from the leading edge. The B.L
thickness is given by Eq. 8.30. It is
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8§ = 0.38x Re,~/°

8§ =038 % 4 x (———)"1/5 = 0.092m
1.6x10
The drag force is using EQ's (8.31 & 8.32); Re = %

Fp = Cp %2 pUZ(LW) = 0.059(Re )™/ x~ pUZ (L. W)

wa \-1/5
Fp = 0.059 (—— x2%1.16%52 %45 =1.032N

b 1.6¥10~5 2
Re, = % = 1.25 % 10° . Hence, the calculation is acceptable

The distance is found as follows

Ueox
Recyir. =5 10° = %L

*105* *1075
gy = ST g
The B.L thickness at x; is found from Eq. 8.21 with

_ XL _ 4.65%1.6 _
5= 4.65\/R_ex = eaos 0.0105m

To find the origin of turbulent flow, using equation of B.L thickness in
turbulent as

4
6 =038x (Rex)—l/s — (:;3896'1 _ 0.5396;
c0X\5 005
= ()
faHE = % (U%o)l/s where § = the same at end of L.B
,_ (0.0105)%/% 5 /4
= ( 0.38 ) (1_6*10—5) = 0.2663m

The distance x; as in figure is then

Xy =L—x,+x'=4—-1.6+0.266 =2.666M

To find the B.L thickness at the end of plate using Eq. 8.30
5%2.666 )‘1/5

8 = 0.38 x Re~1/5 = 0.38 * 2.666 * (

1.6%1075
6 = 0.0662m
The value of part (a) is 28% to high when compared with this more accurate
value. TBL
L.B.L \ _________________
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Problems.

P8.1 How far from the leading edge can turbulence be expected on an airfoil
traveling at 100 m/s if the kinematic viscosity at different elevation as
followes,

v; = 1.169 * 10> m/s?at T = —20C"

v, =1.087 x 10 m/s? at T = —30°

v; = 1.008 x 1075 m/s? at T = —40° use Re.; = 6*10° and
assume flat plate with zero pressure gradient.

[XL1=0.1014 m, x2=0.065 m, x3=0.06]
P8.2 Assume that u = U, sin (%) in a zero pressure gradient boundary

Layer. Calculate; (a) 6(x), (b) ty(x).

P8.3 A boundary Layer profile is approximated with

u=3Uoo% 0<y<6/6
1 6 6

u=Us(3+3) 2<ys;

u=U,(2+7) Z<yss

Determine §(x)and ty(x).

P8.4 A Laminar flow is maintained in a B.L on a 6m-long 5m-wide flat plate
with 20C° atmospheric air flowing at 4 m/s. Assuming a parabolic
profile. Calculate

(@) 6 at x=6m. [5.84 mm]
(b) 7 at x = 6m. [0.025 N/m?]
(c) The drag force on one side. [0.75 N]

P8.5 The velocity profile at a given x-location in B.L is assumed to be
u(y) =10 (%y—g—z). A stream is 2 cm from the flat plate at the

leading edge. How far is it from the plate when x=3m (i.e what is h)?
Also, calculate the displacement thickness at x =3m. Compare the
displacement thickness to (h=2 cm).

[2.89 cm, 6; = 0.894 mm]

P8.6 Atmospheric air at 20C° flows at 10 m/s over a 2m-long 4m-wide flat
plat. Calculate the maximum B.L thickness and drag force on one side
assuming
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a) Laminar flow over the entire length. [6 = 2. 14 mm,F; = 1.38 N]
b) Turbulent flow over the entire length. [§ = 45 mm, F; = 1.687 N|

P8.7 Fluid flows over a flat plat at 20 m/s. Neglecting the laminar portion
then determine & and 7, at x = 6 m if the fluid is:
a- Atmospheric air at 20C° [6=95 mm, 7=17.64 N/m?]
b- Water at 20C° [6=59 mm, 7=279.44 N/m?]
P8.8 Find the shear stress and the thickness of the boundary layer
i- at the trailing edge of smooth flat plate 3.0 m wide and 0.6 m long
parallel to flow immersed in 15 C° water flowing at the an undisturbed
velocity of 0.9 m/s. Assume a laminar boundary layer over the whole
plate. [6=4 mm, ©=0.38 N/m?]
ii- At the center. [6=2.86 mm, =0.537N/m?]
iii- Find the total friction drag on one side of the plate. [Fa=0.684 N]
P8.9 i- Given the general equation for a parabola u=ay?+by+c, drive the
dimensional velocity distribution equation (u/U).
ii- Determine the shear stress at 150 mm and 300 mm back from the
leading edge of the plate placed longitudinally in oil (S.G=0.925,
v=0.73*10"*m?/s) flowing with undisturbed U=0.6 m/s.
[%=3.052 N/m?, =2.16 N/m?]
P8.10 A 80 m long streamlined train has 2.3 m high sides and 2.4 m wide
top. Determine the power required to overcome the skin — friction drag
when the train is traveling at 15 m/s through standard atmosphere at
sea level, assuming the drag on the sides and top to be equal to that on
one side of a flat plate 5m wide and 80 m long. [P=3.825 kW]
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CHAPTER

Turbomachinery

9.1 Introduction.
The pump family is a machine which is designed to add energy to the

fluid, but the turbines family which extract energy from the fluid. Both types
are usually connected to a rotating shaft, hence this is the turbomachinery.
Machine which deliver liquid are called pump, if machine delivers gases can
be classified into the categories as follows

Fan, pressure rise very
small (few inches of water)

Three types of ,| Blower, up to 1 atm.
machines

Compressor above 1 atm.

\4

If machine delivers liquid can be classified into two type as follows

Positive—displacement  pumps
(PDP's) are limited by (low
pressure, small volume).

A\ 4

pumps are used
today

\ 4

Rotodynamic or momentum

change pumps. (From small

volume to very large volume
and higher pressures).

A\ 4
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Reciprocating piston or plunger

A\ 4

External gear pump

A\ 4

Double-screw pump

PDP's >

A 4

Sliding vane pump

Three lobe pump

Double circumferential pump

Flexible — tube squeegee pump

A 4

Centrifugal pumps

\4

Rotodynamic
pumps

Jet pumps

Axial pumps

\ 4
v

Electromagnetic
pumps

\4

A 4
v

Special designs

Fluid actuated
pump

»

All types of pumps can be shows in Fig. (9.1), but this chapter is concern to
the centrifugal pump type, which are explain in details in the next sections.

Plunger

Suction Packing Disc_ha’rge
pipe . [ pipe

| /
)
Suction

check
valve

5y

Disc Emrgc
L R check
valve

7
Liquid cylinder

(a) (b)
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(c) (d)

(e) (f (z)

Figure (9.1) Schematic design of positive-displacement pumps: (a) reciprocating piston or
plunger, (b) external gear pump, (c) double-screw pump, (d) sliding vane, (e) three lobe
pump, ( f) double circumferential piston, (g) flexible-tube squeegee.

9.2 Centrifugal Pump.
The main components of centrifugal pumps are

A\ 4

The impeller

The casing

\4

Centrifugal Pump The drive shaft with gland and packing